Extensions 1→N→G→Q→1 with N=C2 and Q=Dic7.D4

Direct product G=N×Q with N=C2 and Q=Dic7.D4
dρLabelID
C2×Dic7.D4224C2xDic7.D4448,944


Non-split extensions G=N.Q with N=C2 and Q=Dic7.D4
extensionφ:Q→Aut NdρLabelID
C2.1(Dic7.D4) = (C2×C28)⋊Q8central extension (φ=1)448C2.1(Dic7.D4)448,180
C2.2(Dic7.D4) = C7⋊(C428C4)central extension (φ=1)448C2.2(Dic7.D4)448,184
C2.3(Dic7.D4) = D14⋊C45C4central extension (φ=1)224C2.3(Dic7.D4)448,203
C2.4(Dic7.D4) = C2.(C4×D28)central extension (φ=1)224C2.4(Dic7.D4)448,204
C2.5(Dic7.D4) = C24.3D14central extension (φ=1)224C2.5(Dic7.D4)448,478
C2.6(Dic7.D4) = C24.8D14central extension (φ=1)224C2.6(Dic7.D4)448,485
C2.7(Dic7.D4) = C24.13D14central extension (φ=1)224C2.7(Dic7.D4)448,491
C2.8(Dic7.D4) = (C2×Dic7).Q8central stem extension (φ=1)448C2.8(Dic7.D4)448,192
C2.9(Dic7.D4) = (C2×C4).Dic14central stem extension (φ=1)448C2.9(Dic7.D4)448,194
C2.10(Dic7.D4) = (C2×C4).20D28central stem extension (φ=1)224C2.10(Dic7.D4)448,207
C2.11(Dic7.D4) = (C22×D7).9D4central stem extension (φ=1)224C2.11(Dic7.D4)448,209
C2.12(Dic7.D4) = Dic7.SD16central stem extension (φ=1)224C2.12(Dic7.D4)448,294
C2.13(Dic7.D4) = C4⋊C4.D14central stem extension (φ=1)224C2.13(Dic7.D4)448,298
C2.14(Dic7.D4) = C28⋊Q8⋊C2central stem extension (φ=1)224C2.14(Dic7.D4)448,299
C2.15(Dic7.D4) = (C8×Dic7)⋊C2central stem extension (φ=1)224C2.15(Dic7.D4)448,302
C2.16(Dic7.D4) = Dic7.1Q16central stem extension (φ=1)448C2.16(Dic7.D4)448,326
C2.17(Dic7.D4) = Q8⋊C4⋊D7central stem extension (φ=1)224C2.17(Dic7.D4)448,329
C2.18(Dic7.D4) = C56⋊C4.C2central stem extension (φ=1)448C2.18(Dic7.D4)448,331
C2.19(Dic7.D4) = Q8⋊Dic7⋊C2central stem extension (φ=1)224C2.19(Dic7.D4)448,334
C2.20(Dic7.D4) = C23⋊Dic14central stem extension (φ=1)224C2.20(Dic7.D4)448,481
C2.21(Dic7.D4) = C24.9D14central stem extension (φ=1)224C2.21(Dic7.D4)448,486
C2.22(Dic7.D4) = C24.14D14central stem extension (φ=1)224C2.22(Dic7.D4)448,493
C2.23(Dic7.D4) = C23.16D28central stem extension (φ=1)224C2.23(Dic7.D4)448,495

׿
×
𝔽