Copied to
clipboard

G = Dic7.D4order 224 = 25·7

1st non-split extension by Dic7 of D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic7.1D4, C23.6D14, D14⋊C46C2, C22⋊C45D7, (C2×C4).8D14, C2.10(D4×D7), C14.21(C2×D4), C72(C4.4D4), C23.D75C2, (C4×Dic7)⋊12C2, (C2×Dic14)⋊3C2, C2.12(C4○D28), C14.10(C4○D4), C2.9(D42D7), (C2×C14).26C23, (C2×C28).54C22, (C22×D7).4C22, C22.44(C22×D7), (C22×C14).15C22, (C2×Dic7).27C22, (C7×C22⋊C4)⋊7C2, (C2×C7⋊D4).4C2, SmallGroup(224,80)

Series: Derived Chief Lower central Upper central

C1C2×C14 — Dic7.D4
C1C7C14C2×C14C22×D7D14⋊C4 — Dic7.D4
C7C2×C14 — Dic7.D4
C1C22C22⋊C4

Generators and relations for Dic7.D4
 G = < a,b,c,d | a14=c4=1, b2=d2=a7, bab-1=dad-1=a-1, ac=ca, bc=cb, dbd-1=a7b, dcd-1=a7c-1 >

Subgroups: 326 in 76 conjugacy classes, 31 normal (29 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C42, C22⋊C4, C22⋊C4, C2×D4, C2×Q8, Dic7, Dic7, C28, D14, C2×C14, C2×C14, C4.4D4, Dic14, C2×Dic7, C7⋊D4, C2×C28, C22×D7, C22×C14, C4×Dic7, D14⋊C4, C23.D7, C7×C22⋊C4, C2×Dic14, C2×C7⋊D4, Dic7.D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4.4D4, C22×D7, C4○D28, D4×D7, D42D7, Dic7.D4

Smallest permutation representation of Dic7.D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 96 8 89)(2 95 9 88)(3 94 10 87)(4 93 11 86)(5 92 12 85)(6 91 13 98)(7 90 14 97)(15 75 22 82)(16 74 23 81)(17 73 24 80)(18 72 25 79)(19 71 26 78)(20 84 27 77)(21 83 28 76)(29 64 36 57)(30 63 37 70)(31 62 38 69)(32 61 39 68)(33 60 40 67)(34 59 41 66)(35 58 42 65)(43 99 50 106)(44 112 51 105)(45 111 52 104)(46 110 53 103)(47 109 54 102)(48 108 55 101)(49 107 56 100)
(1 73 44 38)(2 74 45 39)(3 75 46 40)(4 76 47 41)(5 77 48 42)(6 78 49 29)(7 79 50 30)(8 80 51 31)(9 81 52 32)(10 82 53 33)(11 83 54 34)(12 84 55 35)(13 71 56 36)(14 72 43 37)(15 103 60 87)(16 104 61 88)(17 105 62 89)(18 106 63 90)(19 107 64 91)(20 108 65 92)(21 109 66 93)(22 110 67 94)(23 111 68 95)(24 112 69 96)(25 99 70 97)(26 100 57 98)(27 101 58 85)(28 102 59 86)
(1 80 8 73)(2 79 9 72)(3 78 10 71)(4 77 11 84)(5 76 12 83)(6 75 13 82)(7 74 14 81)(15 98 22 91)(16 97 23 90)(17 96 24 89)(18 95 25 88)(19 94 26 87)(20 93 27 86)(21 92 28 85)(29 53 36 46)(30 52 37 45)(31 51 38 44)(32 50 39 43)(33 49 40 56)(34 48 41 55)(35 47 42 54)(57 103 64 110)(58 102 65 109)(59 101 66 108)(60 100 67 107)(61 99 68 106)(62 112 69 105)(63 111 70 104)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,96,8,89)(2,95,9,88)(3,94,10,87)(4,93,11,86)(5,92,12,85)(6,91,13,98)(7,90,14,97)(15,75,22,82)(16,74,23,81)(17,73,24,80)(18,72,25,79)(19,71,26,78)(20,84,27,77)(21,83,28,76)(29,64,36,57)(30,63,37,70)(31,62,38,69)(32,61,39,68)(33,60,40,67)(34,59,41,66)(35,58,42,65)(43,99,50,106)(44,112,51,105)(45,111,52,104)(46,110,53,103)(47,109,54,102)(48,108,55,101)(49,107,56,100), (1,73,44,38)(2,74,45,39)(3,75,46,40)(4,76,47,41)(5,77,48,42)(6,78,49,29)(7,79,50,30)(8,80,51,31)(9,81,52,32)(10,82,53,33)(11,83,54,34)(12,84,55,35)(13,71,56,36)(14,72,43,37)(15,103,60,87)(16,104,61,88)(17,105,62,89)(18,106,63,90)(19,107,64,91)(20,108,65,92)(21,109,66,93)(22,110,67,94)(23,111,68,95)(24,112,69,96)(25,99,70,97)(26,100,57,98)(27,101,58,85)(28,102,59,86), (1,80,8,73)(2,79,9,72)(3,78,10,71)(4,77,11,84)(5,76,12,83)(6,75,13,82)(7,74,14,81)(15,98,22,91)(16,97,23,90)(17,96,24,89)(18,95,25,88)(19,94,26,87)(20,93,27,86)(21,92,28,85)(29,53,36,46)(30,52,37,45)(31,51,38,44)(32,50,39,43)(33,49,40,56)(34,48,41,55)(35,47,42,54)(57,103,64,110)(58,102,65,109)(59,101,66,108)(60,100,67,107)(61,99,68,106)(62,112,69,105)(63,111,70,104)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,96,8,89)(2,95,9,88)(3,94,10,87)(4,93,11,86)(5,92,12,85)(6,91,13,98)(7,90,14,97)(15,75,22,82)(16,74,23,81)(17,73,24,80)(18,72,25,79)(19,71,26,78)(20,84,27,77)(21,83,28,76)(29,64,36,57)(30,63,37,70)(31,62,38,69)(32,61,39,68)(33,60,40,67)(34,59,41,66)(35,58,42,65)(43,99,50,106)(44,112,51,105)(45,111,52,104)(46,110,53,103)(47,109,54,102)(48,108,55,101)(49,107,56,100), (1,73,44,38)(2,74,45,39)(3,75,46,40)(4,76,47,41)(5,77,48,42)(6,78,49,29)(7,79,50,30)(8,80,51,31)(9,81,52,32)(10,82,53,33)(11,83,54,34)(12,84,55,35)(13,71,56,36)(14,72,43,37)(15,103,60,87)(16,104,61,88)(17,105,62,89)(18,106,63,90)(19,107,64,91)(20,108,65,92)(21,109,66,93)(22,110,67,94)(23,111,68,95)(24,112,69,96)(25,99,70,97)(26,100,57,98)(27,101,58,85)(28,102,59,86), (1,80,8,73)(2,79,9,72)(3,78,10,71)(4,77,11,84)(5,76,12,83)(6,75,13,82)(7,74,14,81)(15,98,22,91)(16,97,23,90)(17,96,24,89)(18,95,25,88)(19,94,26,87)(20,93,27,86)(21,92,28,85)(29,53,36,46)(30,52,37,45)(31,51,38,44)(32,50,39,43)(33,49,40,56)(34,48,41,55)(35,47,42,54)(57,103,64,110)(58,102,65,109)(59,101,66,108)(60,100,67,107)(61,99,68,106)(62,112,69,105)(63,111,70,104) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,96,8,89),(2,95,9,88),(3,94,10,87),(4,93,11,86),(5,92,12,85),(6,91,13,98),(7,90,14,97),(15,75,22,82),(16,74,23,81),(17,73,24,80),(18,72,25,79),(19,71,26,78),(20,84,27,77),(21,83,28,76),(29,64,36,57),(30,63,37,70),(31,62,38,69),(32,61,39,68),(33,60,40,67),(34,59,41,66),(35,58,42,65),(43,99,50,106),(44,112,51,105),(45,111,52,104),(46,110,53,103),(47,109,54,102),(48,108,55,101),(49,107,56,100)], [(1,73,44,38),(2,74,45,39),(3,75,46,40),(4,76,47,41),(5,77,48,42),(6,78,49,29),(7,79,50,30),(8,80,51,31),(9,81,52,32),(10,82,53,33),(11,83,54,34),(12,84,55,35),(13,71,56,36),(14,72,43,37),(15,103,60,87),(16,104,61,88),(17,105,62,89),(18,106,63,90),(19,107,64,91),(20,108,65,92),(21,109,66,93),(22,110,67,94),(23,111,68,95),(24,112,69,96),(25,99,70,97),(26,100,57,98),(27,101,58,85),(28,102,59,86)], [(1,80,8,73),(2,79,9,72),(3,78,10,71),(4,77,11,84),(5,76,12,83),(6,75,13,82),(7,74,14,81),(15,98,22,91),(16,97,23,90),(17,96,24,89),(18,95,25,88),(19,94,26,87),(20,93,27,86),(21,92,28,85),(29,53,36,46),(30,52,37,45),(31,51,38,44),(32,50,39,43),(33,49,40,56),(34,48,41,55),(35,47,42,54),(57,103,64,110),(58,102,65,109),(59,101,66,108),(60,100,67,107),(61,99,68,106),(62,112,69,105),(63,111,70,104)]])

Dic7.D4 is a maximal subgroup of
C24.27D14  C24.30D14  C24.31D14  C42.93D14  C42.97D14  C42.98D14  C42.99D14  C42.102D14  C42.228D14  Dic1423D4  C4216D14  C42.114D14  C4217D14  C42.115D14  C42.117D14  C24.33D14  C24.34D14  C24.35D14  C244D14  C28⋊(C4○D4)  Dic1419D4  C14.382+ 1+4  C14.402+ 1+4  C14.422+ 1+4  C14.452+ 1+4  C14.462+ 1+4  C14.492+ 1+4  C14.162- 1+4  Dic1422D4  C14.222- 1+4  C14.232- 1+4  C14.242- 1+4  C14.582+ 1+4  C14.262- 1+4  C14.792- 1+4  C4⋊C4.197D14  C14.1212+ 1+4  C14.612+ 1+4  C14.1222+ 1+4  C14.842- 1+4  C14.672+ 1+4  C14.862- 1+4  C42.137D14  C42.138D14  D7×C4.4D4  Dic1410D4  C42.143D14  C42.144D14  C4222D14  C42.160D14  C4223D14  C4224D14  C42.189D14  C42.164D14  C42.165D14
Dic7.D4 is a maximal quotient of
(C2×C28)⋊Q8  C7⋊(C428C4)  (C2×Dic7).Q8  (C2×C4).Dic14  D14⋊C45C4  C2.(C4×D28)  (C2×C4).20D28  (C22×D7).9D4  Dic7.SD16  C4⋊C4.D14  C28⋊Q8⋊C2  (C8×Dic7)⋊C2  Dic7.1Q16  Q8⋊C4⋊D7  C56⋊C4.C2  Q8⋊Dic7⋊C2  C24.3D14  C23⋊Dic14  C24.8D14  C24.9D14  C24.13D14  C24.14D14  C23.16D28

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H7A7B7C14A···14I14J···14O28A···28L
order1222224444444477714···1414···1428···28
size111142822414141414282222···24···44···4

44 irreducible representations

dim111111122222244
type++++++++++++-
imageC1C2C2C2C2C2C2D4D7C4○D4D14D14C4○D28D4×D7D42D7
kernelDic7.D4C4×Dic7D14⋊C4C23.D7C7×C22⋊C4C2×Dic14C2×C7⋊D4Dic7C22⋊C4C14C2×C4C23C2C2C2
# reps1121111234631233

Matrix representation of Dic7.D4 in GL4(𝔽29) generated by

262800
1000
0010
0001
,
5200
162400
0010
0001
,
12000
01200
001727
00012
,
172200
01200
00122
00117
G:=sub<GL(4,GF(29))| [26,1,0,0,28,0,0,0,0,0,1,0,0,0,0,1],[5,16,0,0,2,24,0,0,0,0,1,0,0,0,0,1],[12,0,0,0,0,12,0,0,0,0,17,0,0,0,27,12],[17,0,0,0,22,12,0,0,0,0,12,1,0,0,2,17] >;

Dic7.D4 in GAP, Magma, Sage, TeX

{\rm Dic}_7.D_4
% in TeX

G:=Group("Dic7.D4");
// GroupNames label

G:=SmallGroup(224,80);
// by ID

G=gap.SmallGroup(224,80);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,217,55,506,188,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^14=c^4=1,b^2=d^2=a^7,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^7*b,d*c*d^-1=a^7*c^-1>;
// generators/relations

׿
×
𝔽