Extensions 1→N→G→Q→1 with N=C2 and Q=C4⋊C4⋊D7

Direct product G=N×Q with N=C2 and Q=C4⋊C4⋊D7
dρLabelID
C2×C4⋊C4⋊D7224C2xC4:C4:D7448,965


Non-split extensions G=N.Q with N=C2 and Q=C4⋊C4⋊D7
extensionφ:Q→Aut NdρLabelID
C2.1(C4⋊C4⋊D7) = C7⋊(C425C4)central extension (φ=1)448C2.1(C4:C4:D7)448,185
C2.2(C4⋊C4⋊D7) = C4⋊Dic78C4central extension (φ=1)448C2.2(C4:C4:D7)448,188
C2.3(C4⋊C4⋊D7) = D14⋊C45C4central extension (φ=1)224C2.3(C4:C4:D7)448,203
C2.4(C4⋊C4⋊D7) = C2.(C4×D28)central extension (φ=1)224C2.4(C4:C4:D7)448,204
C2.5(C4⋊C4⋊D7) = C22.23(Q8×D7)central extension (φ=1)448C2.5(C4:C4:D7)448,512
C2.6(C4⋊C4⋊D7) = C4⋊C45Dic7central extension (φ=1)448C2.6(C4:C4:D7)448,515
C2.7(C4⋊C4⋊D7) = D14⋊C47C4central extension (φ=1)224C2.7(C4:C4:D7)448,524
C2.8(C4⋊C4⋊D7) = (C2×C4).Dic14central stem extension (φ=1)448C2.8(C4:C4:D7)448,194
C2.9(C4⋊C4⋊D7) = (C22×C4).D14central stem extension (φ=1)448C2.9(C4:C4:D7)448,196
C2.10(C4⋊C4⋊D7) = (C2×C4).21D28central stem extension (φ=1)224C2.10(C4:C4:D7)448,208
C2.11(C4⋊C4⋊D7) = (C22×D7).9D4central stem extension (φ=1)224C2.11(C4:C4:D7)448,209
C2.12(C4⋊C4⋊D7) = (C2×C28).288D4central stem extension (φ=1)448C2.12(C4:C4:D7)448,516
C2.13(C4⋊C4⋊D7) = (C2×C28).55D4central stem extension (φ=1)448C2.13(C4:C4:D7)448,520
C2.14(C4⋊C4⋊D7) = (C2×C28).290D4central stem extension (φ=1)224C2.14(C4:C4:D7)448,527
C2.15(C4⋊C4⋊D7) = (C2×C4).45D28central stem extension (φ=1)224C2.15(C4:C4:D7)448,528

׿
×
𝔽