Copied to
clipboard

G = C4⋊C4⋊D7order 224 = 25·7

6th semidirect product of C4⋊C4 and D7 acting via D7/C7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C46D7, C4⋊Dic77C2, D14⋊C4.5C2, (C2×C4).32D14, Dic7⋊C413C2, C73(C422C2), (C4×Dic7)⋊14C2, (C2×C28).7C22, C2.16(C4○D28), C14.14(C4○D4), (C2×C14).39C23, C2.7(Q82D7), C2.14(D42D7), (C22×D7).8C22, C22.53(C22×D7), (C2×Dic7).32C22, (C7×C4⋊C4)⋊9C2, SmallGroup(224,93)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4⋊C4⋊D7
C1C7C14C2×C14C22×D7D14⋊C4 — C4⋊C4⋊D7
C7C2×C14 — C4⋊C4⋊D7
C1C22C4⋊C4

Generators and relations for C4⋊C4⋊D7
 G = < a,b,c,d | a4=b4=c7=d2=1, bab-1=a-1, ac=ca, dad=ab2, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 246 in 60 conjugacy classes, 29 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, C23, D7, C14, C42, C22⋊C4, C4⋊C4, C4⋊C4, Dic7, C28, D14, C2×C14, C422C2, C2×Dic7, C2×C28, C22×D7, C4×Dic7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C7×C4⋊C4, C4⋊C4⋊D7
Quotients: C1, C2, C22, C23, D7, C4○D4, D14, C422C2, C22×D7, C4○D28, D42D7, Q82D7, C4⋊C4⋊D7

Smallest permutation representation of C4⋊C4⋊D7
On 112 points
Generators in S112
(1 55 13 48)(2 56 14 49)(3 50 8 43)(4 51 9 44)(5 52 10 45)(6 53 11 46)(7 54 12 47)(15 36 22 29)(16 37 23 30)(17 38 24 31)(18 39 25 32)(19 40 26 33)(20 41 27 34)(21 42 28 35)(57 99 64 106)(58 100 65 107)(59 101 66 108)(60 102 67 109)(61 103 68 110)(62 104 69 111)(63 105 70 112)(71 85 78 92)(72 86 79 93)(73 87 80 94)(74 88 81 95)(75 89 82 96)(76 90 83 97)(77 91 84 98)
(1 76 20 62)(2 77 21 63)(3 71 15 57)(4 72 16 58)(5 73 17 59)(6 74 18 60)(7 75 19 61)(8 78 22 64)(9 79 23 65)(10 80 24 66)(11 81 25 67)(12 82 26 68)(13 83 27 69)(14 84 28 70)(29 99 43 85)(30 100 44 86)(31 101 45 87)(32 102 46 88)(33 103 47 89)(34 104 48 90)(35 105 49 91)(36 106 50 92)(37 107 51 93)(38 108 52 94)(39 109 53 95)(40 110 54 96)(41 111 55 97)(42 112 56 98)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)(29 45)(30 44)(31 43)(32 49)(33 48)(34 47)(35 46)(36 52)(37 51)(38 50)(39 56)(40 55)(41 54)(42 53)(57 66)(58 65)(59 64)(60 70)(61 69)(62 68)(63 67)(71 80)(72 79)(73 78)(74 84)(75 83)(76 82)(77 81)(85 108)(86 107)(87 106)(88 112)(89 111)(90 110)(91 109)(92 101)(93 100)(94 99)(95 105)(96 104)(97 103)(98 102)

G:=sub<Sym(112)| (1,55,13,48)(2,56,14,49)(3,50,8,43)(4,51,9,44)(5,52,10,45)(6,53,11,46)(7,54,12,47)(15,36,22,29)(16,37,23,30)(17,38,24,31)(18,39,25,32)(19,40,26,33)(20,41,27,34)(21,42,28,35)(57,99,64,106)(58,100,65,107)(59,101,66,108)(60,102,67,109)(61,103,68,110)(62,104,69,111)(63,105,70,112)(71,85,78,92)(72,86,79,93)(73,87,80,94)(74,88,81,95)(75,89,82,96)(76,90,83,97)(77,91,84,98), (1,76,20,62)(2,77,21,63)(3,71,15,57)(4,72,16,58)(5,73,17,59)(6,74,18,60)(7,75,19,61)(8,78,22,64)(9,79,23,65)(10,80,24,66)(11,81,25,67)(12,82,26,68)(13,83,27,69)(14,84,28,70)(29,99,43,85)(30,100,44,86)(31,101,45,87)(32,102,46,88)(33,103,47,89)(34,104,48,90)(35,105,49,91)(36,106,50,92)(37,107,51,93)(38,108,52,94)(39,109,53,95)(40,110,54,96)(41,111,55,97)(42,112,56,98), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,45)(30,44)(31,43)(32,49)(33,48)(34,47)(35,46)(36,52)(37,51)(38,50)(39,56)(40,55)(41,54)(42,53)(57,66)(58,65)(59,64)(60,70)(61,69)(62,68)(63,67)(71,80)(72,79)(73,78)(74,84)(75,83)(76,82)(77,81)(85,108)(86,107)(87,106)(88,112)(89,111)(90,110)(91,109)(92,101)(93,100)(94,99)(95,105)(96,104)(97,103)(98,102)>;

G:=Group( (1,55,13,48)(2,56,14,49)(3,50,8,43)(4,51,9,44)(5,52,10,45)(6,53,11,46)(7,54,12,47)(15,36,22,29)(16,37,23,30)(17,38,24,31)(18,39,25,32)(19,40,26,33)(20,41,27,34)(21,42,28,35)(57,99,64,106)(58,100,65,107)(59,101,66,108)(60,102,67,109)(61,103,68,110)(62,104,69,111)(63,105,70,112)(71,85,78,92)(72,86,79,93)(73,87,80,94)(74,88,81,95)(75,89,82,96)(76,90,83,97)(77,91,84,98), (1,76,20,62)(2,77,21,63)(3,71,15,57)(4,72,16,58)(5,73,17,59)(6,74,18,60)(7,75,19,61)(8,78,22,64)(9,79,23,65)(10,80,24,66)(11,81,25,67)(12,82,26,68)(13,83,27,69)(14,84,28,70)(29,99,43,85)(30,100,44,86)(31,101,45,87)(32,102,46,88)(33,103,47,89)(34,104,48,90)(35,105,49,91)(36,106,50,92)(37,107,51,93)(38,108,52,94)(39,109,53,95)(40,110,54,96)(41,111,55,97)(42,112,56,98), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,45)(30,44)(31,43)(32,49)(33,48)(34,47)(35,46)(36,52)(37,51)(38,50)(39,56)(40,55)(41,54)(42,53)(57,66)(58,65)(59,64)(60,70)(61,69)(62,68)(63,67)(71,80)(72,79)(73,78)(74,84)(75,83)(76,82)(77,81)(85,108)(86,107)(87,106)(88,112)(89,111)(90,110)(91,109)(92,101)(93,100)(94,99)(95,105)(96,104)(97,103)(98,102) );

G=PermutationGroup([[(1,55,13,48),(2,56,14,49),(3,50,8,43),(4,51,9,44),(5,52,10,45),(6,53,11,46),(7,54,12,47),(15,36,22,29),(16,37,23,30),(17,38,24,31),(18,39,25,32),(19,40,26,33),(20,41,27,34),(21,42,28,35),(57,99,64,106),(58,100,65,107),(59,101,66,108),(60,102,67,109),(61,103,68,110),(62,104,69,111),(63,105,70,112),(71,85,78,92),(72,86,79,93),(73,87,80,94),(74,88,81,95),(75,89,82,96),(76,90,83,97),(77,91,84,98)], [(1,76,20,62),(2,77,21,63),(3,71,15,57),(4,72,16,58),(5,73,17,59),(6,74,18,60),(7,75,19,61),(8,78,22,64),(9,79,23,65),(10,80,24,66),(11,81,25,67),(12,82,26,68),(13,83,27,69),(14,84,28,70),(29,99,43,85),(30,100,44,86),(31,101,45,87),(32,102,46,88),(33,103,47,89),(34,104,48,90),(35,105,49,91),(36,106,50,92),(37,107,51,93),(38,108,52,94),(39,109,53,95),(40,110,54,96),(41,111,55,97),(42,112,56,98)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27),(29,45),(30,44),(31,43),(32,49),(33,48),(34,47),(35,46),(36,52),(37,51),(38,50),(39,56),(40,55),(41,54),(42,53),(57,66),(58,65),(59,64),(60,70),(61,69),(62,68),(63,67),(71,80),(72,79),(73,78),(74,84),(75,83),(76,82),(77,81),(85,108),(86,107),(87,106),(88,112),(89,111),(90,110),(91,109),(92,101),(93,100),(94,99),(95,105),(96,104),(97,103),(98,102)]])

C4⋊C4⋊D7 is a maximal subgroup of
C14.52- 1+4  C14.112+ 1+4  C14.62- 1+4  C4210D14  C42.93D14  C42.96D14  C42.99D14  C42.102D14  C4216D14  C4217D14  C42.119D14  C42.122D14  C42.131D14  C42.134D14  C42.135D14  C14.342+ 1+4  C14.422+ 1+4  C14.462+ 1+4  C14.482+ 1+4  C22⋊Q825D7  C14.532+ 1+4  C14.202- 1+4  C14.222- 1+4  C14.232- 1+4  C14.772- 1+4  C14.242- 1+4  C14.562+ 1+4  C14.572+ 1+4  C14.582+ 1+4  C4⋊C4.197D14  C14.612+ 1+4  C14.1222+ 1+4  C14.642+ 1+4  C14.842- 1+4  C14.852- 1+4  C14.682+ 1+4  C42.237D14  C42.150D14  C42.151D14  C42.152D14  C42.153D14  C42.154D14  C42.155D14  C42.157D14  C42.160D14  D7×C422C2  C4223D14  C42.161D14  C42.163D14  C42.164D14  C42.165D14  C42.176D14  C42.177D14  C42.178D14  C42.180D14
C4⋊C4⋊D7 is a maximal quotient of
C7⋊(C425C4)  C4⋊Dic78C4  (C2×C4).Dic14  (C22×C4).D14  D14⋊C45C4  C2.(C4×D28)  (C2×C4).21D28  (C22×D7).9D4  C22.23(Q8×D7)  C4⋊C45Dic7  (C2×C28).288D4  (C2×C28).55D4  D14⋊C47C4  (C2×C28).290D4  (C2×C4).45D28

44 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I7A7B7C14A···14I28A···28R
order1222244444444477714···1428···28
size111128224414141414282222···24···4

44 irreducible representations

dim111111222244
type++++++++-+
imageC1C2C2C2C2C2D7C4○D4D14C4○D28D42D7Q82D7
kernelC4⋊C4⋊D7C4×Dic7Dic7⋊C4C4⋊Dic7D14⋊C4C7×C4⋊C4C4⋊C4C14C2×C4C2C2C2
# reps1111313691233

Matrix representation of C4⋊C4⋊D7 in GL4(𝔽29) generated by

201400
15900
00170
001212
,
12000
01200
002827
0001
,
7100
28000
0010
0001
,
0100
1000
0010
002828
G:=sub<GL(4,GF(29))| [20,15,0,0,14,9,0,0,0,0,17,12,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,28,0,0,0,27,1],[7,28,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,28,0,0,0,28] >;

C4⋊C4⋊D7 in GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes D_7
% in TeX

G:=Group("C4:C4:D7");
// GroupNames label

G:=SmallGroup(224,93);
// by ID

G=gap.SmallGroup(224,93);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,217,55,218,188,86,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^7=d^2=1,b*a*b^-1=a^-1,a*c=c*a,d*a*d=a*b^2,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽