Extensions 1→N→G→Q→1 with N=C2 and Q=D28.2C4

Direct product G=N×Q with N=C2 and Q=D28.2C4
dρLabelID
C2×D28.2C4224C2xD28.2C4448,1191


Non-split extensions G=N.Q with N=C2 and Q=D28.2C4
extensionφ:Q→Aut NdρLabelID
C2.1(D28.2C4) = C8×Dic14central extension (φ=1)448C2.1(D28.2C4)448,212
C2.2(D28.2C4) = C8×D28central extension (φ=1)224C2.2(D28.2C4)448,220
C2.3(D28.2C4) = D14.C42central extension (φ=1)224C2.3(D28.2C4)448,223
C2.4(D28.2C4) = C28.12C42central extension (φ=1)224C2.4(D28.2C4)448,635
C2.5(D28.2C4) = C8×C7⋊D4central extension (φ=1)224C2.5(D28.2C4)448,643
C2.6(D28.2C4) = C5611Q8central stem extension (φ=1)448C2.6(D28.2C4)448,213
C2.7(D28.2C4) = C86D28central stem extension (φ=1)224C2.7(D28.2C4)448,222
C2.8(D28.2C4) = C42.243D14central stem extension (φ=1)224C2.8(D28.2C4)448,224
C2.9(D28.2C4) = C56⋊C4⋊C2central stem extension (φ=1)224C2.9(D28.2C4)448,254
C2.10(D28.2C4) = D14⋊C8⋊C2central stem extension (φ=1)224C2.10(D28.2C4)448,261
C2.11(D28.2C4) = D142M4(2)central stem extension (φ=1)224C2.11(D28.2C4)448,262
C2.12(D28.2C4) = Dic7⋊M4(2)central stem extension (φ=1)224C2.12(D28.2C4)448,263
C2.13(D28.2C4) = C42.27D14central stem extension (φ=1)448C2.13(D28.2C4)448,362
C2.14(D28.2C4) = D143M4(2)central stem extension (φ=1)224C2.14(D28.2C4)448,370
C2.15(D28.2C4) = C42.30D14central stem extension (φ=1)224C2.15(D28.2C4)448,373
C2.16(D28.2C4) = C42.31D14central stem extension (φ=1)224C2.16(D28.2C4)448,374
C2.17(D28.2C4) = Dic7⋊C8⋊C2central stem extension (φ=1)224C2.17(D28.2C4)448,636
C2.18(D28.2C4) = (C22×C8)⋊D7central stem extension (φ=1)224C2.18(D28.2C4)448,644
C2.19(D28.2C4) = C5632D4central stem extension (φ=1)224C2.19(D28.2C4)448,645

׿
×
𝔽