metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D14⋊2M4(2), C7⋊C8⋊25D4, C7⋊2(C8⋊9D4), D14⋊C8⋊19C2, D14⋊C4.5C4, C22⋊C8⋊13D7, C56⋊C4⋊13C2, C4.197(D4×D7), C14.27(C4×D4), Dic7⋊C8⋊19C2, C14.9(C8○D4), C28.356(C2×D4), (C2×C8).195D14, Dic7⋊C4.5C4, C23.13(C4×D7), C23.D7.5C4, (C22×C4).79D14, C2.13(D7×M4(2)), C28.298(C4○D4), (C2×C56).172C22, (C2×C28).823C23, C14.22(C2×M4(2)), C4.124(D4⋊2D7), (C22×C28).94C22, C2.11(Dic7⋊4D4), C2.11(D28.2C4), (C4×Dic7).182C22, (D7×C2×C8)⋊15C2, (C2×C4).32(C4×D7), (C4×C7⋊D4).1C2, (C2×C7⋊D4).5C4, (C7×C22⋊C8)⋊17C2, (C2×C28).40(C2×C4), (C2×C4.Dic7)⋊1C2, C22.105(C2×C4×D7), (C2×C7⋊C8).191C22, (C2×C4×D7).275C22, (C22×C14).41(C2×C4), (C2×C14).78(C22×C4), (C2×Dic7).17(C2×C4), (C22×D7).36(C2×C4), (C2×C4).765(C22×D7), SmallGroup(448,262)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D14⋊2M4(2)
G = < a,b,c,d | a14=b2=c8=d2=1, bab=cac-1=a-1, ad=da, cbc-1=a5b, dbd=a7b, dcd=c5 >
Subgroups: 508 in 124 conjugacy classes, 51 normal (47 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C8⋊C4, C22⋊C8, C22⋊C8, C4⋊C8, C4×D4, C22×C8, C2×M4(2), C7⋊C8, C7⋊C8, C56, C4×D7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×C14, C8⋊9D4, C8×D7, C2×C7⋊C8, C4.Dic7, C4×Dic7, Dic7⋊C4, D14⋊C4, C23.D7, C2×C56, C2×C4×D7, C2×C7⋊D4, C22×C28, Dic7⋊C8, C56⋊C4, D14⋊C8, C7×C22⋊C8, D7×C2×C8, C2×C4.Dic7, C4×C7⋊D4, D14⋊2M4(2)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, M4(2), C22×C4, C2×D4, C4○D4, D14, C4×D4, C2×M4(2), C8○D4, C4×D7, C22×D7, C8⋊9D4, C2×C4×D7, D4×D7, D4⋊2D7, Dic7⋊4D4, D28.2C4, D7×M4(2), D14⋊2M4(2)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182)(183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 67)(2 66)(3 65)(4 64)(5 63)(6 62)(7 61)(8 60)(9 59)(10 58)(11 57)(12 70)(13 69)(14 68)(15 122)(16 121)(17 120)(18 119)(19 118)(20 117)(21 116)(22 115)(23 114)(24 113)(25 126)(26 125)(27 124)(28 123)(29 215)(30 214)(31 213)(32 212)(33 211)(34 224)(35 223)(36 222)(37 221)(38 220)(39 219)(40 218)(41 217)(42 216)(43 197)(44 210)(45 209)(46 208)(47 207)(48 206)(49 205)(50 204)(51 203)(52 202)(53 201)(54 200)(55 199)(56 198)(71 149)(72 148)(73 147)(74 146)(75 145)(76 144)(77 143)(78 142)(79 141)(80 154)(81 153)(82 152)(83 151)(84 150)(85 164)(86 163)(87 162)(88 161)(89 160)(90 159)(91 158)(92 157)(93 156)(94 155)(95 168)(96 167)(97 166)(98 165)(99 195)(100 194)(101 193)(102 192)(103 191)(104 190)(105 189)(106 188)(107 187)(108 186)(109 185)(110 184)(111 183)(112 196)(127 180)(128 179)(129 178)(130 177)(131 176)(132 175)(133 174)(134 173)(135 172)(136 171)(137 170)(138 169)(139 182)(140 181)
(1 26 151 104 68 119 84 184)(2 25 152 103 69 118 71 183)(3 24 153 102 70 117 72 196)(4 23 154 101 57 116 73 195)(5 22 141 100 58 115 74 194)(6 21 142 99 59 114 75 193)(7 20 143 112 60 113 76 192)(8 19 144 111 61 126 77 191)(9 18 145 110 62 125 78 190)(10 17 146 109 63 124 79 189)(11 16 147 108 64 123 80 188)(12 15 148 107 65 122 81 187)(13 28 149 106 66 121 82 186)(14 27 150 105 67 120 83 185)(29 86 127 55 215 158 180 208)(30 85 128 54 216 157 181 207)(31 98 129 53 217 156 182 206)(32 97 130 52 218 155 169 205)(33 96 131 51 219 168 170 204)(34 95 132 50 220 167 171 203)(35 94 133 49 221 166 172 202)(36 93 134 48 222 165 173 201)(37 92 135 47 223 164 174 200)(38 91 136 46 224 163 175 199)(39 90 137 45 211 162 176 198)(40 89 138 44 212 161 177 197)(41 88 139 43 213 160 178 210)(42 87 140 56 214 159 179 209)
(1 40)(2 41)(3 42)(4 29)(5 30)(6 31)(7 32)(8 33)(9 34)(10 35)(11 36)(12 37)(13 38)(14 39)(15 164)(16 165)(17 166)(18 167)(19 168)(20 155)(21 156)(22 157)(23 158)(24 159)(25 160)(26 161)(27 162)(28 163)(43 183)(44 184)(45 185)(46 186)(47 187)(48 188)(49 189)(50 190)(51 191)(52 192)(53 193)(54 194)(55 195)(56 196)(57 215)(58 216)(59 217)(60 218)(61 219)(62 220)(63 221)(64 222)(65 223)(66 224)(67 211)(68 212)(69 213)(70 214)(71 178)(72 179)(73 180)(74 181)(75 182)(76 169)(77 170)(78 171)(79 172)(80 173)(81 174)(82 175)(83 176)(84 177)(85 115)(86 116)(87 117)(88 118)(89 119)(90 120)(91 121)(92 122)(93 123)(94 124)(95 125)(96 126)(97 113)(98 114)(99 206)(100 207)(101 208)(102 209)(103 210)(104 197)(105 198)(106 199)(107 200)(108 201)(109 202)(110 203)(111 204)(112 205)(127 154)(128 141)(129 142)(130 143)(131 144)(132 145)(133 146)(134 147)(135 148)(136 149)(137 150)(138 151)(139 152)(140 153)
G:=sub<Sym(224)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,67)(2,66)(3,65)(4,64)(5,63)(6,62)(7,61)(8,60)(9,59)(10,58)(11,57)(12,70)(13,69)(14,68)(15,122)(16,121)(17,120)(18,119)(19,118)(20,117)(21,116)(22,115)(23,114)(24,113)(25,126)(26,125)(27,124)(28,123)(29,215)(30,214)(31,213)(32,212)(33,211)(34,224)(35,223)(36,222)(37,221)(38,220)(39,219)(40,218)(41,217)(42,216)(43,197)(44,210)(45,209)(46,208)(47,207)(48,206)(49,205)(50,204)(51,203)(52,202)(53,201)(54,200)(55,199)(56,198)(71,149)(72,148)(73,147)(74,146)(75,145)(76,144)(77,143)(78,142)(79,141)(80,154)(81,153)(82,152)(83,151)(84,150)(85,164)(86,163)(87,162)(88,161)(89,160)(90,159)(91,158)(92,157)(93,156)(94,155)(95,168)(96,167)(97,166)(98,165)(99,195)(100,194)(101,193)(102,192)(103,191)(104,190)(105,189)(106,188)(107,187)(108,186)(109,185)(110,184)(111,183)(112,196)(127,180)(128,179)(129,178)(130,177)(131,176)(132,175)(133,174)(134,173)(135,172)(136,171)(137,170)(138,169)(139,182)(140,181), (1,26,151,104,68,119,84,184)(2,25,152,103,69,118,71,183)(3,24,153,102,70,117,72,196)(4,23,154,101,57,116,73,195)(5,22,141,100,58,115,74,194)(6,21,142,99,59,114,75,193)(7,20,143,112,60,113,76,192)(8,19,144,111,61,126,77,191)(9,18,145,110,62,125,78,190)(10,17,146,109,63,124,79,189)(11,16,147,108,64,123,80,188)(12,15,148,107,65,122,81,187)(13,28,149,106,66,121,82,186)(14,27,150,105,67,120,83,185)(29,86,127,55,215,158,180,208)(30,85,128,54,216,157,181,207)(31,98,129,53,217,156,182,206)(32,97,130,52,218,155,169,205)(33,96,131,51,219,168,170,204)(34,95,132,50,220,167,171,203)(35,94,133,49,221,166,172,202)(36,93,134,48,222,165,173,201)(37,92,135,47,223,164,174,200)(38,91,136,46,224,163,175,199)(39,90,137,45,211,162,176,198)(40,89,138,44,212,161,177,197)(41,88,139,43,213,160,178,210)(42,87,140,56,214,159,179,209), (1,40)(2,41)(3,42)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,164)(16,165)(17,166)(18,167)(19,168)(20,155)(21,156)(22,157)(23,158)(24,159)(25,160)(26,161)(27,162)(28,163)(43,183)(44,184)(45,185)(46,186)(47,187)(48,188)(49,189)(50,190)(51,191)(52,192)(53,193)(54,194)(55,195)(56,196)(57,215)(58,216)(59,217)(60,218)(61,219)(62,220)(63,221)(64,222)(65,223)(66,224)(67,211)(68,212)(69,213)(70,214)(71,178)(72,179)(73,180)(74,181)(75,182)(76,169)(77,170)(78,171)(79,172)(80,173)(81,174)(82,175)(83,176)(84,177)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120)(91,121)(92,122)(93,123)(94,124)(95,125)(96,126)(97,113)(98,114)(99,206)(100,207)(101,208)(102,209)(103,210)(104,197)(105,198)(106,199)(107,200)(108,201)(109,202)(110,203)(111,204)(112,205)(127,154)(128,141)(129,142)(130,143)(131,144)(132,145)(133,146)(134,147)(135,148)(136,149)(137,150)(138,151)(139,152)(140,153)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,67)(2,66)(3,65)(4,64)(5,63)(6,62)(7,61)(8,60)(9,59)(10,58)(11,57)(12,70)(13,69)(14,68)(15,122)(16,121)(17,120)(18,119)(19,118)(20,117)(21,116)(22,115)(23,114)(24,113)(25,126)(26,125)(27,124)(28,123)(29,215)(30,214)(31,213)(32,212)(33,211)(34,224)(35,223)(36,222)(37,221)(38,220)(39,219)(40,218)(41,217)(42,216)(43,197)(44,210)(45,209)(46,208)(47,207)(48,206)(49,205)(50,204)(51,203)(52,202)(53,201)(54,200)(55,199)(56,198)(71,149)(72,148)(73,147)(74,146)(75,145)(76,144)(77,143)(78,142)(79,141)(80,154)(81,153)(82,152)(83,151)(84,150)(85,164)(86,163)(87,162)(88,161)(89,160)(90,159)(91,158)(92,157)(93,156)(94,155)(95,168)(96,167)(97,166)(98,165)(99,195)(100,194)(101,193)(102,192)(103,191)(104,190)(105,189)(106,188)(107,187)(108,186)(109,185)(110,184)(111,183)(112,196)(127,180)(128,179)(129,178)(130,177)(131,176)(132,175)(133,174)(134,173)(135,172)(136,171)(137,170)(138,169)(139,182)(140,181), (1,26,151,104,68,119,84,184)(2,25,152,103,69,118,71,183)(3,24,153,102,70,117,72,196)(4,23,154,101,57,116,73,195)(5,22,141,100,58,115,74,194)(6,21,142,99,59,114,75,193)(7,20,143,112,60,113,76,192)(8,19,144,111,61,126,77,191)(9,18,145,110,62,125,78,190)(10,17,146,109,63,124,79,189)(11,16,147,108,64,123,80,188)(12,15,148,107,65,122,81,187)(13,28,149,106,66,121,82,186)(14,27,150,105,67,120,83,185)(29,86,127,55,215,158,180,208)(30,85,128,54,216,157,181,207)(31,98,129,53,217,156,182,206)(32,97,130,52,218,155,169,205)(33,96,131,51,219,168,170,204)(34,95,132,50,220,167,171,203)(35,94,133,49,221,166,172,202)(36,93,134,48,222,165,173,201)(37,92,135,47,223,164,174,200)(38,91,136,46,224,163,175,199)(39,90,137,45,211,162,176,198)(40,89,138,44,212,161,177,197)(41,88,139,43,213,160,178,210)(42,87,140,56,214,159,179,209), (1,40)(2,41)(3,42)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,164)(16,165)(17,166)(18,167)(19,168)(20,155)(21,156)(22,157)(23,158)(24,159)(25,160)(26,161)(27,162)(28,163)(43,183)(44,184)(45,185)(46,186)(47,187)(48,188)(49,189)(50,190)(51,191)(52,192)(53,193)(54,194)(55,195)(56,196)(57,215)(58,216)(59,217)(60,218)(61,219)(62,220)(63,221)(64,222)(65,223)(66,224)(67,211)(68,212)(69,213)(70,214)(71,178)(72,179)(73,180)(74,181)(75,182)(76,169)(77,170)(78,171)(79,172)(80,173)(81,174)(82,175)(83,176)(84,177)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120)(91,121)(92,122)(93,123)(94,124)(95,125)(96,126)(97,113)(98,114)(99,206)(100,207)(101,208)(102,209)(103,210)(104,197)(105,198)(106,199)(107,200)(108,201)(109,202)(110,203)(111,204)(112,205)(127,154)(128,141)(129,142)(130,143)(131,144)(132,145)(133,146)(134,147)(135,148)(136,149)(137,150)(138,151)(139,152)(140,153) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182),(183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,67),(2,66),(3,65),(4,64),(5,63),(6,62),(7,61),(8,60),(9,59),(10,58),(11,57),(12,70),(13,69),(14,68),(15,122),(16,121),(17,120),(18,119),(19,118),(20,117),(21,116),(22,115),(23,114),(24,113),(25,126),(26,125),(27,124),(28,123),(29,215),(30,214),(31,213),(32,212),(33,211),(34,224),(35,223),(36,222),(37,221),(38,220),(39,219),(40,218),(41,217),(42,216),(43,197),(44,210),(45,209),(46,208),(47,207),(48,206),(49,205),(50,204),(51,203),(52,202),(53,201),(54,200),(55,199),(56,198),(71,149),(72,148),(73,147),(74,146),(75,145),(76,144),(77,143),(78,142),(79,141),(80,154),(81,153),(82,152),(83,151),(84,150),(85,164),(86,163),(87,162),(88,161),(89,160),(90,159),(91,158),(92,157),(93,156),(94,155),(95,168),(96,167),(97,166),(98,165),(99,195),(100,194),(101,193),(102,192),(103,191),(104,190),(105,189),(106,188),(107,187),(108,186),(109,185),(110,184),(111,183),(112,196),(127,180),(128,179),(129,178),(130,177),(131,176),(132,175),(133,174),(134,173),(135,172),(136,171),(137,170),(138,169),(139,182),(140,181)], [(1,26,151,104,68,119,84,184),(2,25,152,103,69,118,71,183),(3,24,153,102,70,117,72,196),(4,23,154,101,57,116,73,195),(5,22,141,100,58,115,74,194),(6,21,142,99,59,114,75,193),(7,20,143,112,60,113,76,192),(8,19,144,111,61,126,77,191),(9,18,145,110,62,125,78,190),(10,17,146,109,63,124,79,189),(11,16,147,108,64,123,80,188),(12,15,148,107,65,122,81,187),(13,28,149,106,66,121,82,186),(14,27,150,105,67,120,83,185),(29,86,127,55,215,158,180,208),(30,85,128,54,216,157,181,207),(31,98,129,53,217,156,182,206),(32,97,130,52,218,155,169,205),(33,96,131,51,219,168,170,204),(34,95,132,50,220,167,171,203),(35,94,133,49,221,166,172,202),(36,93,134,48,222,165,173,201),(37,92,135,47,223,164,174,200),(38,91,136,46,224,163,175,199),(39,90,137,45,211,162,176,198),(40,89,138,44,212,161,177,197),(41,88,139,43,213,160,178,210),(42,87,140,56,214,159,179,209)], [(1,40),(2,41),(3,42),(4,29),(5,30),(6,31),(7,32),(8,33),(9,34),(10,35),(11,36),(12,37),(13,38),(14,39),(15,164),(16,165),(17,166),(18,167),(19,168),(20,155),(21,156),(22,157),(23,158),(24,159),(25,160),(26,161),(27,162),(28,163),(43,183),(44,184),(45,185),(46,186),(47,187),(48,188),(49,189),(50,190),(51,191),(52,192),(53,193),(54,194),(55,195),(56,196),(57,215),(58,216),(59,217),(60,218),(61,219),(62,220),(63,221),(64,222),(65,223),(66,224),(67,211),(68,212),(69,213),(70,214),(71,178),(72,179),(73,180),(74,181),(75,182),(76,169),(77,170),(78,171),(79,172),(80,173),(81,174),(82,175),(83,176),(84,177),(85,115),(86,116),(87,117),(88,118),(89,119),(90,120),(91,121),(92,122),(93,123),(94,124),(95,125),(96,126),(97,113),(98,114),(99,206),(100,207),(101,208),(102,209),(103,210),(104,197),(105,198),(106,199),(107,200),(108,201),(109,202),(110,203),(111,204),(112,205),(127,154),(128,141),(129,142),(130,143),(131,144),(132,145),(133,146),(134,147),(135,148),(136,149),(137,150),(138,151),(139,152),(140,153)]])
88 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 14A | ··· | 14I | 14J | ··· | 14O | 28A | ··· | 28L | 28M | ··· | 28R | 56A | ··· | 56X |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 | 56 | ··· | 56 |
size | 1 | 1 | 1 | 1 | 4 | 14 | 14 | 1 | 1 | 1 | 1 | 4 | 14 | 14 | 28 | 28 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 14 | 14 | 14 | 14 | 28 | 28 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
88 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | D7 | C4○D4 | M4(2) | D14 | D14 | C8○D4 | C4×D7 | C4×D7 | D28.2C4 | D4×D7 | D4⋊2D7 | D7×M4(2) |
kernel | D14⋊2M4(2) | Dic7⋊C8 | C56⋊C4 | D14⋊C8 | C7×C22⋊C8 | D7×C2×C8 | C2×C4.Dic7 | C4×C7⋊D4 | Dic7⋊C4 | D14⋊C4 | C23.D7 | C2×C7⋊D4 | C7⋊C8 | C22⋊C8 | C28 | D14 | C2×C8 | C22×C4 | C14 | C2×C4 | C23 | C2 | C4 | C4 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 4 | 6 | 3 | 4 | 6 | 6 | 24 | 3 | 3 | 6 |
Matrix representation of D14⋊2M4(2) ►in GL6(𝔽113)
10 | 88 | 0 | 0 | 0 | 0 |
14 | 112 | 0 | 0 | 0 | 0 |
0 | 0 | 112 | 0 | 0 | 0 |
0 | 0 | 0 | 112 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
24 | 79 | 0 | 0 | 0 | 0 |
100 | 89 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 90 | 112 | 0 | 0 |
0 | 0 | 0 | 0 | 112 | 0 |
0 | 0 | 0 | 0 | 0 | 112 |
0 | 55 | 0 | 0 | 0 | 0 |
76 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 46 | 4 | 0 | 0 |
0 | 0 | 4 | 67 | 0 | 0 |
0 | 0 | 0 | 0 | 94 | 61 |
0 | 0 | 0 | 0 | 11 | 19 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 37 | 72 | 0 | 0 |
0 | 0 | 94 | 76 | 0 | 0 |
0 | 0 | 0 | 0 | 85 | 7 |
0 | 0 | 0 | 0 | 98 | 28 |
G:=sub<GL(6,GF(113))| [10,14,0,0,0,0,88,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[24,100,0,0,0,0,79,89,0,0,0,0,0,0,1,90,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112],[0,76,0,0,0,0,55,0,0,0,0,0,0,0,46,4,0,0,0,0,4,67,0,0,0,0,0,0,94,11,0,0,0,0,61,19],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,37,94,0,0,0,0,72,76,0,0,0,0,0,0,85,98,0,0,0,0,7,28] >;
D14⋊2M4(2) in GAP, Magma, Sage, TeX
D_{14}\rtimes_2M_4(2)
% in TeX
G:=Group("D14:2M4(2)");
// GroupNames label
G:=SmallGroup(448,262);
// by ID
G=gap.SmallGroup(448,262);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,701,219,58,136,18822]);
// Polycyclic
G:=Group<a,b,c,d|a^14=b^2=c^8=d^2=1,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a^5*b,d*b*d=a^7*b,d*c*d=c^5>;
// generators/relations