Extensions 1→N→G→Q→1 with N=C2×C4 and Q=C58

Direct product G=N×Q with N=C2×C4 and Q=C58
dρLabelID
C22×C116464C2^2xC116464,45

Semidirect products G=N:Q with N=C2×C4 and Q=C58
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1C58 = C22⋊C4×C29φ: C58/C29C2 ⊆ Aut C2×C4232(C2xC4):1C58464,21
(C2×C4)⋊2C58 = D4×C58φ: C58/C29C2 ⊆ Aut C2×C4232(C2xC4):2C58464,46
(C2×C4)⋊3C58 = C4○D4×C29φ: C58/C29C2 ⊆ Aut C2×C42322(C2xC4):3C58464,48

Non-split extensions G=N.Q with N=C2×C4 and Q=C58
extensionφ:Q→Aut NdρLabelID
(C2×C4).1C58 = C4⋊C4×C29φ: C58/C29C2 ⊆ Aut C2×C4464(C2xC4).1C58464,22
(C2×C4).2C58 = M4(2)×C29φ: C58/C29C2 ⊆ Aut C2×C42322(C2xC4).2C58464,24
(C2×C4).3C58 = Q8×C58φ: C58/C29C2 ⊆ Aut C2×C4464(C2xC4).3C58464,47

׿
×
𝔽