extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3xC39):1C4 = (C3xC39):C4 | φ: C4/C1 → C4 ⊆ Aut C3xC39 | 78 | 4+ | (C3xC39):1C4 | 468,41 |
(C3xC39):2C4 = C39:Dic3 | φ: C4/C1 → C4 ⊆ Aut C3xC39 | 117 | | (C3xC39):2C4 | 468,38 |
(C3xC39):3C4 = C3xC39:C4 | φ: C4/C1 → C4 ⊆ Aut C3xC39 | 78 | 4 | (C3xC39):3C4 | 468,37 |
(C3xC39):4C4 = C32xC13:C4 | φ: C4/C1 → C4 ⊆ Aut C3xC39 | 117 | | (C3xC39):4C4 | 468,36 |
(C3xC39):5C4 = C13xC32:C4 | φ: C4/C1 → C4 ⊆ Aut C3xC39 | 78 | 4 | (C3xC39):5C4 | 468,39 |
(C3xC39):6C4 = C32:Dic13 | φ: C4/C1 → C4 ⊆ Aut C3xC39 | 78 | 4 | (C3xC39):6C4 | 468,40 |
(C3xC39):7C4 = C3:Dic39 | φ: C4/C2 → C2 ⊆ Aut C3xC39 | 468 | | (C3xC39):7C4 | 468,27 |
(C3xC39):8C4 = C3xDic39 | φ: C4/C2 → C2 ⊆ Aut C3xC39 | 156 | 2 | (C3xC39):8C4 | 468,25 |
(C3xC39):9C4 = C32xDic13 | φ: C4/C2 → C2 ⊆ Aut C3xC39 | 468 | | (C3xC39):9C4 | 468,23 |
(C3xC39):10C4 = Dic3xC39 | φ: C4/C2 → C2 ⊆ Aut C3xC39 | 156 | 2 | (C3xC39):10C4 | 468,24 |
(C3xC39):11C4 = C13xC3:Dic3 | φ: C4/C2 → C2 ⊆ Aut C3xC39 | 468 | | (C3xC39):11C4 | 468,26 |