Extensions 1→N→G→Q→1 with N=C3xC39 and Q=C4

Direct product G=NxQ with N=C3xC39 and Q=C4
dρLabelID
C3xC156468C3xC156468,28

Semidirect products G=N:Q with N=C3xC39 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C3xC39):1C4 = (C3xC39):C4φ: C4/C1C4 ⊆ Aut C3xC39784+(C3xC39):1C4468,41
(C3xC39):2C4 = C39:Dic3φ: C4/C1C4 ⊆ Aut C3xC39117(C3xC39):2C4468,38
(C3xC39):3C4 = C3xC39:C4φ: C4/C1C4 ⊆ Aut C3xC39784(C3xC39):3C4468,37
(C3xC39):4C4 = C32xC13:C4φ: C4/C1C4 ⊆ Aut C3xC39117(C3xC39):4C4468,36
(C3xC39):5C4 = C13xC32:C4φ: C4/C1C4 ⊆ Aut C3xC39784(C3xC39):5C4468,39
(C3xC39):6C4 = C32:Dic13φ: C4/C1C4 ⊆ Aut C3xC39784(C3xC39):6C4468,40
(C3xC39):7C4 = C3:Dic39φ: C4/C2C2 ⊆ Aut C3xC39468(C3xC39):7C4468,27
(C3xC39):8C4 = C3xDic39φ: C4/C2C2 ⊆ Aut C3xC391562(C3xC39):8C4468,25
(C3xC39):9C4 = C32xDic13φ: C4/C2C2 ⊆ Aut C3xC39468(C3xC39):9C4468,23
(C3xC39):10C4 = Dic3xC39φ: C4/C2C2 ⊆ Aut C3xC391562(C3xC39):10C4468,24
(C3xC39):11C4 = C13xC3:Dic3φ: C4/C2C2 ⊆ Aut C3xC39468(C3xC39):11C4468,26


׿
x
:
Z
F
o
wr
Q
<