d | ρ | Label | ID | ||
---|---|---|---|---|---|
S3xC78 | 156 | 2 | S3xC78 | 468,51 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C6:(S3xC13) = C3:S3xC26 | φ: S3xC13/C39 → C2 ⊆ Aut C6 | 234 | C6:(S3xC13) | 468,53 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C6.1(S3xC13) = C13xDic9 | φ: S3xC13/C39 → C2 ⊆ Aut C6 | 468 | 2 | C6.1(S3xC13) | 468,3 |
C6.2(S3xC13) = D9xC26 | φ: S3xC13/C39 → C2 ⊆ Aut C6 | 234 | 2 | C6.2(S3xC13) | 468,16 |
C6.3(S3xC13) = C13xC3:Dic3 | φ: S3xC13/C39 → C2 ⊆ Aut C6 | 468 | C6.3(S3xC13) | 468,26 | |
C6.4(S3xC13) = Dic3xC39 | central extension (φ=1) | 156 | 2 | C6.4(S3xC13) | 468,24 |