Extensions 1→N→G→Q→1 with N=C4 and Q=C2×C58

Direct product G=N×Q with N=C4 and Q=C2×C58
dρLabelID
C22×C116464C2^2xC116464,45

Semidirect products G=N:Q with N=C4 and Q=C2×C58
extensionφ:Q→Aut NdρLabelID
C4⋊(C2×C58) = D4×C58φ: C2×C58/C58C2 ⊆ Aut C4232C4:(C2xC58)464,46

Non-split extensions G=N.Q with N=C4 and Q=C2×C58
extensionφ:Q→Aut NdρLabelID
C4.1(C2×C58) = D8×C29φ: C2×C58/C58C2 ⊆ Aut C42322C4.1(C2xC58)464,25
C4.2(C2×C58) = SD16×C29φ: C2×C58/C58C2 ⊆ Aut C42322C4.2(C2xC58)464,26
C4.3(C2×C58) = Q16×C29φ: C2×C58/C58C2 ⊆ Aut C44642C4.3(C2xC58)464,27
C4.4(C2×C58) = Q8×C58φ: C2×C58/C58C2 ⊆ Aut C4464C4.4(C2xC58)464,47
C4.5(C2×C58) = C4○D4×C29φ: C2×C58/C58C2 ⊆ Aut C42322C4.5(C2xC58)464,48
C4.6(C2×C58) = M4(2)×C29central extension (φ=1)2322C4.6(C2xC58)464,24

׿
×
𝔽