Extensions 1→N→G→Q→1 with N=D6 and Q=C2×Dic5

Direct product G=N×Q with N=D6 and Q=C2×Dic5
dρLabelID
C22×S3×Dic5240C2^2xS3xDic5480,1115

Semidirect products G=N:Q with N=D6 and Q=C2×Dic5
extensionφ:Q→Out NdρLabelID
D61(C2×Dic5) = Dic5×D12φ: C2×Dic5/Dic5C2 ⊆ Out D6240D6:1(C2xDic5)480,491
D62(C2×Dic5) = Dic158D4φ: C2×Dic5/Dic5C2 ⊆ Out D6240D6:2(C2xDic5)480,511
D63(C2×Dic5) = Dic5×C3⋊D4φ: C2×Dic5/Dic5C2 ⊆ Out D6240D6:3(C2xDic5)480,627
D64(C2×Dic5) = Dic1517D4φ: C2×Dic5/Dic5C2 ⊆ Out D6240D6:4(C2xDic5)480,636
D65(C2×Dic5) = C2×D6⋊Dic5φ: C2×Dic5/C2×C10C2 ⊆ Out D6240D6:5(C2xDic5)480,614
D66(C2×Dic5) = S3×C23.D5φ: C2×Dic5/C2×C10C2 ⊆ Out D6120D6:6(C2xDic5)480,630

Non-split extensions G=N.Q with N=D6 and Q=C2×Dic5
extensionφ:Q→Out NdρLabelID
D6.1(C2×Dic5) = D12.2Dic5φ: C2×Dic5/Dic5C2 ⊆ Out D62404D6.1(C2xDic5)480,362
D6.2(C2×Dic5) = D12.Dic5φ: C2×Dic5/Dic5C2 ⊆ Out D62404D6.2(C2xDic5)480,364
D6.3(C2×Dic5) = C2×D6.Dic5φ: C2×Dic5/C2×C10C2 ⊆ Out D6240D6.3(C2xDic5)480,370
D6.4(C2×Dic5) = (S3×C20)⋊5C4φ: C2×Dic5/C2×C10C2 ⊆ Out D6240D6.4(C2xDic5)480,414
D6.5(C2×Dic5) = (S3×C20)⋊7C4φ: C2×Dic5/C2×C10C2 ⊆ Out D6240D6.5(C2xDic5)480,447
D6.6(C2×Dic5) = C2×S3×C52C8φ: trivial image240D6.6(C2xDic5)480,361
D6.7(C2×Dic5) = S3×C4.Dic5φ: trivial image1204D6.7(C2xDic5)480,363
D6.8(C2×Dic5) = C4×S3×Dic5φ: trivial image240D6.8(C2xDic5)480,473
D6.9(C2×Dic5) = S3×C4⋊Dic5φ: trivial image240D6.9(C2xDic5)480,502

׿
×
𝔽