Copied to
clipboard

G = S3×C4.Dic5order 480 = 25·3·5

Direct product of S3 and C4.Dic5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3×C4.Dic5, C60.180C23, C52C821D6, C59(S3×M4(2)), (S3×C20).7C4, C20.103(C4×S3), C60.100(C2×C4), (C4×S3).49D10, (C2×C20).312D6, (C2×C12).80D10, (C5×S3)⋊4M4(2), C1516(C2×M4(2)), (C4×S3).1Dic5, D6.7(C2×Dic5), C60.7C410C2, C4.14(S3×Dic5), C153C826C22, D6.Dic513C2, (C2×C60).40C22, C12.10(C2×Dic5), C22.6(S3×Dic5), C6.3(C22×Dic5), (S3×C20).54C22, C20.177(C22×S3), C30.102(C22×C4), (C2×Dic3).5Dic5, (C10×Dic3).17C4, Dic3.5(C2×Dic5), C12.177(C22×D5), (C22×S3).3Dic5, (S3×C2×C4).1D5, (S3×C2×C20).1C2, C4.150(C2×S3×D5), (S3×C52C8)⋊12C2, C32(C2×C4.Dic5), C2.5(C2×S3×Dic5), (S3×C2×C10).10C4, C10.111(S3×C2×C4), (C2×C4).92(S3×D5), (C2×C30).99(C2×C4), (C2×C10).75(C4×S3), (C3×C4.Dic5)⋊5C2, (C2×C6).4(C2×Dic5), (S3×C10).34(C2×C4), (C3×C52C8)⋊21C22, (C5×Dic3).42(C2×C4), SmallGroup(480,363)

Series: Derived Chief Lower central Upper central

C1C30 — S3×C4.Dic5
C1C5C15C30C60C3×C52C8S3×C52C8 — S3×C4.Dic5
C15C30 — S3×C4.Dic5
C1C4C2×C4

Generators and relations for S3×C4.Dic5
 G = < a,b,c,d,e | a3=b2=c4=1, d10=c2, e2=d5, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d9 >

Subgroups: 412 in 136 conjugacy classes, 64 normal (50 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, S3, C6, C6, C8, C2×C4, C2×C4, C23, C10, C10, Dic3, C12, D6, D6, C2×C6, C15, C2×C8, M4(2), C22×C4, C20, C20, C2×C10, C2×C10, C3⋊C8, C24, C4×S3, C2×Dic3, C2×C12, C22×S3, C5×S3, C5×S3, C30, C30, C2×M4(2), C52C8, C52C8, C2×C20, C2×C20, C22×C10, S3×C8, C8⋊S3, C4.Dic3, C3×M4(2), S3×C2×C4, C5×Dic3, C60, S3×C10, S3×C10, C2×C30, C2×C52C8, C4.Dic5, C4.Dic5, C22×C20, S3×M4(2), C3×C52C8, C153C8, S3×C20, C10×Dic3, C2×C60, S3×C2×C10, C2×C4.Dic5, S3×C52C8, D6.Dic5, C3×C4.Dic5, C60.7C4, S3×C2×C20, S3×C4.Dic5
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D5, D6, M4(2), C22×C4, Dic5, D10, C4×S3, C22×S3, C2×M4(2), C2×Dic5, C22×D5, S3×C2×C4, S3×D5, C4.Dic5, C22×Dic5, S3×M4(2), S3×Dic5, C2×S3×D5, C2×C4.Dic5, C2×S3×Dic5, S3×C4.Dic5

Smallest permutation representation of S3×C4.Dic5
On 120 points
Generators in S120
(1 103 41)(2 104 42)(3 105 43)(4 106 44)(5 107 45)(6 108 46)(7 109 47)(8 110 48)(9 111 49)(10 112 50)(11 113 51)(12 114 52)(13 115 53)(14 116 54)(15 117 55)(16 118 56)(17 119 57)(18 120 58)(19 101 59)(20 102 60)(21 62 90)(22 63 91)(23 64 92)(24 65 93)(25 66 94)(26 67 95)(27 68 96)(28 69 97)(29 70 98)(30 71 99)(31 72 100)(32 73 81)(33 74 82)(34 75 83)(35 76 84)(36 77 85)(37 78 86)(38 79 87)(39 80 88)(40 61 89)
(21 90)(22 91)(23 92)(24 93)(25 94)(26 95)(27 96)(28 97)(29 98)(30 99)(31 100)(32 81)(33 82)(34 83)(35 84)(36 85)(37 86)(38 87)(39 88)(40 89)(41 103)(42 104)(43 105)(44 106)(45 107)(46 108)(47 109)(48 110)(49 111)(50 112)(51 113)(52 114)(53 115)(54 116)(55 117)(56 118)(57 119)(58 120)(59 101)(60 102)
(1 6 11 16)(2 7 12 17)(3 8 13 18)(4 9 14 19)(5 10 15 20)(21 36 31 26)(22 37 32 27)(23 38 33 28)(24 39 34 29)(25 40 35 30)(41 46 51 56)(42 47 52 57)(43 48 53 58)(44 49 54 59)(45 50 55 60)(61 76 71 66)(62 77 72 67)(63 78 73 68)(64 79 74 69)(65 80 75 70)(81 96 91 86)(82 97 92 87)(83 98 93 88)(84 99 94 89)(85 100 95 90)(101 106 111 116)(102 107 112 117)(103 108 113 118)(104 109 114 119)(105 110 115 120)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 74 6 79 11 64 16 69)(2 63 7 68 12 73 17 78)(3 72 8 77 13 62 18 67)(4 61 9 66 14 71 19 76)(5 70 10 75 15 80 20 65)(21 58 26 43 31 48 36 53)(22 47 27 52 32 57 37 42)(23 56 28 41 33 46 38 51)(24 45 29 50 34 55 39 60)(25 54 30 59 35 44 40 49)(81 119 86 104 91 109 96 114)(82 108 87 113 92 118 97 103)(83 117 88 102 93 107 98 112)(84 106 89 111 94 116 99 101)(85 115 90 120 95 105 100 110)

G:=sub<Sym(120)| (1,103,41)(2,104,42)(3,105,43)(4,106,44)(5,107,45)(6,108,46)(7,109,47)(8,110,48)(9,111,49)(10,112,50)(11,113,51)(12,114,52)(13,115,53)(14,116,54)(15,117,55)(16,118,56)(17,119,57)(18,120,58)(19,101,59)(20,102,60)(21,62,90)(22,63,91)(23,64,92)(24,65,93)(25,66,94)(26,67,95)(27,68,96)(28,69,97)(29,70,98)(30,71,99)(31,72,100)(32,73,81)(33,74,82)(34,75,83)(35,76,84)(36,77,85)(37,78,86)(38,79,87)(39,80,88)(40,61,89), (21,90)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,100)(32,81)(33,82)(34,83)(35,84)(36,85)(37,86)(38,87)(39,88)(40,89)(41,103)(42,104)(43,105)(44,106)(45,107)(46,108)(47,109)(48,110)(49,111)(50,112)(51,113)(52,114)(53,115)(54,116)(55,117)(56,118)(57,119)(58,120)(59,101)(60,102), (1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)(21,36,31,26)(22,37,32,27)(23,38,33,28)(24,39,34,29)(25,40,35,30)(41,46,51,56)(42,47,52,57)(43,48,53,58)(44,49,54,59)(45,50,55,60)(61,76,71,66)(62,77,72,67)(63,78,73,68)(64,79,74,69)(65,80,75,70)(81,96,91,86)(82,97,92,87)(83,98,93,88)(84,99,94,89)(85,100,95,90)(101,106,111,116)(102,107,112,117)(103,108,113,118)(104,109,114,119)(105,110,115,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,74,6,79,11,64,16,69)(2,63,7,68,12,73,17,78)(3,72,8,77,13,62,18,67)(4,61,9,66,14,71,19,76)(5,70,10,75,15,80,20,65)(21,58,26,43,31,48,36,53)(22,47,27,52,32,57,37,42)(23,56,28,41,33,46,38,51)(24,45,29,50,34,55,39,60)(25,54,30,59,35,44,40,49)(81,119,86,104,91,109,96,114)(82,108,87,113,92,118,97,103)(83,117,88,102,93,107,98,112)(84,106,89,111,94,116,99,101)(85,115,90,120,95,105,100,110)>;

G:=Group( (1,103,41)(2,104,42)(3,105,43)(4,106,44)(5,107,45)(6,108,46)(7,109,47)(8,110,48)(9,111,49)(10,112,50)(11,113,51)(12,114,52)(13,115,53)(14,116,54)(15,117,55)(16,118,56)(17,119,57)(18,120,58)(19,101,59)(20,102,60)(21,62,90)(22,63,91)(23,64,92)(24,65,93)(25,66,94)(26,67,95)(27,68,96)(28,69,97)(29,70,98)(30,71,99)(31,72,100)(32,73,81)(33,74,82)(34,75,83)(35,76,84)(36,77,85)(37,78,86)(38,79,87)(39,80,88)(40,61,89), (21,90)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,100)(32,81)(33,82)(34,83)(35,84)(36,85)(37,86)(38,87)(39,88)(40,89)(41,103)(42,104)(43,105)(44,106)(45,107)(46,108)(47,109)(48,110)(49,111)(50,112)(51,113)(52,114)(53,115)(54,116)(55,117)(56,118)(57,119)(58,120)(59,101)(60,102), (1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)(21,36,31,26)(22,37,32,27)(23,38,33,28)(24,39,34,29)(25,40,35,30)(41,46,51,56)(42,47,52,57)(43,48,53,58)(44,49,54,59)(45,50,55,60)(61,76,71,66)(62,77,72,67)(63,78,73,68)(64,79,74,69)(65,80,75,70)(81,96,91,86)(82,97,92,87)(83,98,93,88)(84,99,94,89)(85,100,95,90)(101,106,111,116)(102,107,112,117)(103,108,113,118)(104,109,114,119)(105,110,115,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,74,6,79,11,64,16,69)(2,63,7,68,12,73,17,78)(3,72,8,77,13,62,18,67)(4,61,9,66,14,71,19,76)(5,70,10,75,15,80,20,65)(21,58,26,43,31,48,36,53)(22,47,27,52,32,57,37,42)(23,56,28,41,33,46,38,51)(24,45,29,50,34,55,39,60)(25,54,30,59,35,44,40,49)(81,119,86,104,91,109,96,114)(82,108,87,113,92,118,97,103)(83,117,88,102,93,107,98,112)(84,106,89,111,94,116,99,101)(85,115,90,120,95,105,100,110) );

G=PermutationGroup([[(1,103,41),(2,104,42),(3,105,43),(4,106,44),(5,107,45),(6,108,46),(7,109,47),(8,110,48),(9,111,49),(10,112,50),(11,113,51),(12,114,52),(13,115,53),(14,116,54),(15,117,55),(16,118,56),(17,119,57),(18,120,58),(19,101,59),(20,102,60),(21,62,90),(22,63,91),(23,64,92),(24,65,93),(25,66,94),(26,67,95),(27,68,96),(28,69,97),(29,70,98),(30,71,99),(31,72,100),(32,73,81),(33,74,82),(34,75,83),(35,76,84),(36,77,85),(37,78,86),(38,79,87),(39,80,88),(40,61,89)], [(21,90),(22,91),(23,92),(24,93),(25,94),(26,95),(27,96),(28,97),(29,98),(30,99),(31,100),(32,81),(33,82),(34,83),(35,84),(36,85),(37,86),(38,87),(39,88),(40,89),(41,103),(42,104),(43,105),(44,106),(45,107),(46,108),(47,109),(48,110),(49,111),(50,112),(51,113),(52,114),(53,115),(54,116),(55,117),(56,118),(57,119),(58,120),(59,101),(60,102)], [(1,6,11,16),(2,7,12,17),(3,8,13,18),(4,9,14,19),(5,10,15,20),(21,36,31,26),(22,37,32,27),(23,38,33,28),(24,39,34,29),(25,40,35,30),(41,46,51,56),(42,47,52,57),(43,48,53,58),(44,49,54,59),(45,50,55,60),(61,76,71,66),(62,77,72,67),(63,78,73,68),(64,79,74,69),(65,80,75,70),(81,96,91,86),(82,97,92,87),(83,98,93,88),(84,99,94,89),(85,100,95,90),(101,106,111,116),(102,107,112,117),(103,108,113,118),(104,109,114,119),(105,110,115,120)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,74,6,79,11,64,16,69),(2,63,7,68,12,73,17,78),(3,72,8,77,13,62,18,67),(4,61,9,66,14,71,19,76),(5,70,10,75,15,80,20,65),(21,58,26,43,31,48,36,53),(22,47,27,52,32,57,37,42),(23,56,28,41,33,46,38,51),(24,45,29,50,34,55,39,60),(25,54,30,59,35,44,40,49),(81,119,86,104,91,109,96,114),(82,108,87,113,92,118,97,103),(83,117,88,102,93,107,98,112),(84,106,89,111,94,116,99,101),(85,115,90,120,95,105,100,110)]])

78 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F5A5B6A6B8A8B8C8D8E8F8G8H10A···10F10G···10N12A12B12C15A15B20A···20H20I···20P24A24B24C24D30A···30F60A···60H
order122222344444455668888888810···1010···10121212151520···2020···202424242430···3060···60
size1123362112336222410101010303030302···26···6224442···26···6202020204···44···4

78 irreducible representations

dim1111111112222222222222444444
type++++++++++-+-+-+-+-
imageC1C2C2C2C2C2C4C4C4S3D5D6D6M4(2)Dic5D10Dic5D10Dic5C4×S3C4×S3C4.Dic5S3×D5S3×M4(2)S3×Dic5C2×S3×D5S3×Dic5S3×C4.Dic5
kernelS3×C4.Dic5S3×C52C8D6.Dic5C3×C4.Dic5C60.7C4S3×C2×C20S3×C20C10×Dic3S3×C2×C10C4.Dic5S3×C2×C4C52C8C2×C20C5×S3C4×S3C4×S3C2×Dic3C2×C12C22×S3C20C2×C10S3C2×C4C5C4C4C22C1
# reps12211142212214442222216222228

Matrix representation of S3×C4.Dic5 in GL4(𝔽241) generated by

1000
0100
001213
00112239
,
240000
024000
0024028
0001
,
64000
017700
0010
0001
,
6000
04000
0010
0001
,
0100
64000
0010
0001
G:=sub<GL(4,GF(241))| [1,0,0,0,0,1,0,0,0,0,1,112,0,0,213,239],[240,0,0,0,0,240,0,0,0,0,240,0,0,0,28,1],[64,0,0,0,0,177,0,0,0,0,1,0,0,0,0,1],[6,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[0,64,0,0,1,0,0,0,0,0,1,0,0,0,0,1] >;

S3×C4.Dic5 in GAP, Magma, Sage, TeX

S_3\times C_4.{\rm Dic}_5
% in TeX

G:=Group("S3xC4.Dic5");
// GroupNames label

G:=SmallGroup(480,363);
// by ID

G=gap.SmallGroup(480,363);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,422,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^4=1,d^10=c^2,e^2=d^5,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^9>;
// generators/relations

׿
×
𝔽