Extensions 1→N→G→Q→1 with N=C2xC10 and Q=S4

Direct product G=NxQ with N=C2xC10 and Q=S4
dρLabelID
C2xC10xS460C2xC10xS4480,1198

Semidirect products G=N:Q with N=C2xC10 and Q=S4
extensionφ:Q→Aut NdρLabelID
(C2xC10):1S4 = C5xC22:S4φ: S4/C22S3 ⊆ Aut C2xC10406(C2xC10):1S4480,1200
(C2xC10):2S4 = C24:4D15φ: S4/C22S3 ⊆ Aut C2xC10406(C2xC10):2S4480,1201
(C2xC10):3S4 = C5xA4:D4φ: S4/A4C2 ⊆ Aut C2xC10606(C2xC10):3S4480,1023
(C2xC10):4S4 = C24:2D15φ: S4/A4C2 ⊆ Aut C2xC10606(C2xC10):4S4480,1034
(C2xC10):5S4 = C22xC5:S4φ: S4/A4C2 ⊆ Aut C2xC1060(C2xC10):5S4480,1199

Non-split extensions G=N.Q with N=C2xC10 and Q=S4
extensionφ:Q→Aut NdρLabelID
(C2xC10).1S4 = C5xC42:S3φ: S4/C22S3 ⊆ Aut C2xC10603(C2xC10).1S4480,254
(C2xC10).2S4 = C42:D15φ: S4/C22S3 ⊆ Aut C2xC10606+(C2xC10).2S4480,258
(C2xC10).3S4 = C5xQ8.D6φ: S4/A4C2 ⊆ Aut C2xC10804(C2xC10).3S4480,1018
(C2xC10).4S4 = Q8:Dic15φ: S4/A4C2 ⊆ Aut C2xC10160(C2xC10).4S4480,260
(C2xC10).5S4 = C2xQ8.D15φ: S4/A4C2 ⊆ Aut C2xC10160(C2xC10).5S4480,1027
(C2xC10).6S4 = C2xQ8:D15φ: S4/A4C2 ⊆ Aut C2xC1080(C2xC10).6S4480,1028
(C2xC10).7S4 = Q8.D30φ: S4/A4C2 ⊆ Aut C2xC10804(C2xC10).7S4480,1029
(C2xC10).8S4 = C2xA4:Dic5φ: S4/A4C2 ⊆ Aut C2xC10120(C2xC10).8S4480,1033
(C2xC10).9S4 = C5xQ8:Dic3central extension (φ=1)160(C2xC10).9S4480,256
(C2xC10).10S4 = C10xCSU2(F3)central extension (φ=1)160(C2xC10).10S4480,1016
(C2xC10).11S4 = C10xGL2(F3)central extension (φ=1)80(C2xC10).11S4480,1017
(C2xC10).12S4 = C10xA4:C4central extension (φ=1)120(C2xC10).12S4480,1022

׿
x
:
Z
F
o
wr
Q
<