Extensions 1→N→G→Q→1 with N=C3×C5⋊D4 and Q=C4

Direct product G=N×Q with N=C3×C5⋊D4 and Q=C4
dρLabelID
C12×C5⋊D4240C12xC5:D4480,721

Semidirect products G=N:Q with N=C3×C5⋊D4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×C5⋊D4)⋊1C4 = D4×C3⋊F5φ: C4/C1C4 ⊆ Out C3×C5⋊D4608(C3xC5:D4):1C4480,1067
(C3×C5⋊D4)⋊2C4 = C3×D4×F5φ: C4/C1C4 ⊆ Out C3×C5⋊D4608(C3xC5:D4):2C4480,1054
(C3×C5⋊D4)⋊3C4 = Dic3×C5⋊D4φ: C4/C2C2 ⊆ Out C3×C5⋊D4240(C3xC5:D4):3C4480,629
(C3×C5⋊D4)⋊4C4 = Dic1516D4φ: C4/C2C2 ⊆ Out C3×C5⋊D4240(C3xC5:D4):4C4480,635
(C3×C5⋊D4)⋊5C4 = C3×Dic54D4φ: C4/C2C2 ⊆ Out C3×C5⋊D4240(C3xC5:D4):5C4480,674

Non-split extensions G=N.Q with N=C3×C5⋊D4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×C5⋊D4).1C4 = Dic10.Dic3φ: C4/C1C4 ⊆ Out C3×C5⋊D42408(C3xC5:D4).1C4480,1066
(C3×C5⋊D4).2C4 = C3×D4.F5φ: C4/C1C4 ⊆ Out C3×C5⋊D42408(C3xC5:D4).2C4480,1053
(C3×C5⋊D4).3C4 = D20.3Dic3φ: C4/C2C2 ⊆ Out C3×C5⋊D42404(C3xC5:D4).3C4480,359
(C3×C5⋊D4).4C4 = D20.2Dic3φ: C4/C2C2 ⊆ Out C3×C5⋊D42404(C3xC5:D4).4C4480,360
(C3×C5⋊D4).5C4 = C3×D20.2C4φ: C4/C2C2 ⊆ Out C3×C5⋊D42404(C3xC5:D4).5C4480,700
(C3×C5⋊D4).6C4 = C3×D20.3C4φ: trivial image2402(C3xC5:D4).6C4480,694

׿
×
𝔽