Extensions 1→N→G→Q→1 with N=C3×D8 and Q=C10

Direct product G=N×Q with N=C3×D8 and Q=C10
dρLabelID
D8×C30240D8xC30480,937

Semidirect products G=N:Q with N=C3×D8 and Q=C10
extensionφ:Q→Out NdρLabelID
(C3×D8)⋊1C10 = C5×C3⋊D16φ: C10/C5C2 ⊆ Out C3×D82404(C3xD8):1C10480,145
(C3×D8)⋊2C10 = C5×S3×D8φ: C10/C5C2 ⊆ Out C3×D81204(C3xD8):2C10480,789
(C3×D8)⋊3C10 = C5×D83S3φ: C10/C5C2 ⊆ Out C3×D82404(C3xD8):3C10480,791
(C3×D8)⋊4C10 = C5×D8⋊S3φ: C10/C5C2 ⊆ Out C3×D81204(C3xD8):4C10480,790
(C3×D8)⋊5C10 = C15×D16φ: C10/C5C2 ⊆ Out C3×D82402(C3xD8):5C10480,214
(C3×D8)⋊6C10 = C15×C8⋊C22φ: C10/C5C2 ⊆ Out C3×D81204(C3xD8):6C10480,941
(C3×D8)⋊7C10 = C15×C4○D8φ: trivial image2402(C3xD8):7C10480,940

Non-split extensions G=N.Q with N=C3×D8 and Q=C10
extensionφ:Q→Out NdρLabelID
(C3×D8).1C10 = C5×D8.S3φ: C10/C5C2 ⊆ Out C3×D82404(C3xD8).1C10480,146
(C3×D8).2C10 = C15×SD32φ: C10/C5C2 ⊆ Out C3×D82402(C3xD8).2C10480,215

׿
×
𝔽