Extensions 1→N→G→Q→1 with N=C10 and Q=C3×D8

Direct product G=N×Q with N=C10 and Q=C3×D8
dρLabelID
D8×C30240D8xC30480,937

Semidirect products G=N:Q with N=C10 and Q=C3×D8
extensionφ:Q→Aut NdρLabelID
C101(C3×D8) = C6×D40φ: C3×D8/C24C2 ⊆ Aut C10240C10:1(C3xD8)480,696
C102(C3×D8) = C6×D4⋊D5φ: C3×D8/C3×D4C2 ⊆ Aut C10240C10:2(C3xD8)480,724

Non-split extensions G=N.Q with N=C10 and Q=C3×D8
extensionφ:Q→Aut NdρLabelID
C10.1(C3×D8) = C3×D80φ: C3×D8/C24C2 ⊆ Aut C102402C10.1(C3xD8)480,77
C10.2(C3×D8) = C3×C16⋊D5φ: C3×D8/C24C2 ⊆ Aut C102402C10.2(C3xD8)480,78
C10.3(C3×D8) = C3×Dic40φ: C3×D8/C24C2 ⊆ Aut C104802C10.3(C3xD8)480,79
C10.4(C3×D8) = C3×C405C4φ: C3×D8/C24C2 ⊆ Aut C10480C10.4(C3xD8)480,96
C10.5(C3×D8) = C3×D205C4φ: C3×D8/C24C2 ⊆ Aut C10240C10.5(C3xD8)480,99
C10.6(C3×D8) = C3×C10.D8φ: C3×D8/C3×D4C2 ⊆ Aut C10480C10.6(C3xD8)480,85
C10.7(C3×D8) = C3×D206C4φ: C3×D8/C3×D4C2 ⊆ Aut C10240C10.7(C3xD8)480,87
C10.8(C3×D8) = C3×C5⋊D16φ: C3×D8/C3×D4C2 ⊆ Aut C102404C10.8(C3xD8)480,104
C10.9(C3×D8) = C3×D8.D5φ: C3×D8/C3×D4C2 ⊆ Aut C102404C10.9(C3xD8)480,105
C10.10(C3×D8) = C3×C5⋊SD32φ: C3×D8/C3×D4C2 ⊆ Aut C102404C10.10(C3xD8)480,106
C10.11(C3×D8) = C3×C5⋊Q32φ: C3×D8/C3×D4C2 ⊆ Aut C104804C10.11(C3xD8)480,107
C10.12(C3×D8) = C3×D4⋊Dic5φ: C3×D8/C3×D4C2 ⊆ Aut C10240C10.12(C3xD8)480,110
C10.13(C3×D8) = C15×D4⋊C4central extension (φ=1)240C10.13(C3xD8)480,205
C10.14(C3×D8) = C15×C2.D8central extension (φ=1)480C10.14(C3xD8)480,210
C10.15(C3×D8) = C15×D16central extension (φ=1)2402C10.15(C3xD8)480,214
C10.16(C3×D8) = C15×SD32central extension (φ=1)2402C10.16(C3xD8)480,215
C10.17(C3×D8) = C15×Q32central extension (φ=1)4802C10.17(C3xD8)480,216

׿
×
𝔽