Copied to
clipboard

G = C6×D40order 480 = 25·3·5

Direct product of C6 and D40

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C6×D40, C305D8, C2431D10, C60.175D4, C12.45D20, C12038C22, C60.261C23, C51(C6×D8), C87(C6×D5), C408(C2×C6), (C2×C40)⋊5C6, (C2×C24)⋊8D5, C101(C3×D8), C1511(C2×D8), D203(C2×C6), (C2×D20)⋊5C6, C10.8(C6×D4), C4.7(C3×D20), (C2×C120)⋊12C2, (C6×D20)⋊21C2, (C2×C6).54D20, C6.81(C2×D20), C20.30(C3×D4), C2.12(C6×D20), (C2×C30).113D4, C30.282(C2×D4), (C2×C12).430D10, (C3×D20)⋊33C22, C20.28(C22×C6), C22.13(C3×D20), (C2×C60).509C22, C12.234(C22×D5), (C2×C8)⋊3(C3×D5), C4.27(D5×C2×C6), (C2×C4).81(C6×D5), (C2×C20).92(C2×C6), (C2×C10).17(C3×D4), SmallGroup(480,696)

Series: Derived Chief Lower central Upper central

C1C20 — C6×D40
C1C5C10C20C60C3×D20C6×D20 — C6×D40
C5C10C20 — C6×D40
C1C2×C6C2×C12C2×C24

Generators and relations for C6×D40
 G = < a,b,c | a6=b40=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 752 in 152 conjugacy classes, 66 normal (30 characteristic)
C1, C2, C2 [×2], C2 [×4], C3, C4 [×2], C22, C22 [×8], C5, C6, C6 [×2], C6 [×4], C8 [×2], C2×C4, D4 [×6], C23 [×2], D5 [×4], C10, C10 [×2], C12 [×2], C2×C6, C2×C6 [×8], C15, C2×C8, D8 [×4], C2×D4 [×2], C20 [×2], D10 [×8], C2×C10, C24 [×2], C2×C12, C3×D4 [×6], C22×C6 [×2], C3×D5 [×4], C30, C30 [×2], C2×D8, C40 [×2], D20 [×4], D20 [×2], C2×C20, C22×D5 [×2], C2×C24, C3×D8 [×4], C6×D4 [×2], C60 [×2], C6×D5 [×8], C2×C30, D40 [×4], C2×C40, C2×D20 [×2], C6×D8, C120 [×2], C3×D20 [×4], C3×D20 [×2], C2×C60, D5×C2×C6 [×2], C2×D40, C3×D40 [×4], C2×C120, C6×D20 [×2], C6×D40
Quotients: C1, C2 [×7], C3, C22 [×7], C6 [×7], D4 [×2], C23, D5, C2×C6 [×7], D8 [×2], C2×D4, D10 [×3], C3×D4 [×2], C22×C6, C3×D5, C2×D8, D20 [×2], C22×D5, C3×D8 [×2], C6×D4, C6×D5 [×3], D40 [×2], C2×D20, C6×D8, C3×D20 [×2], D5×C2×C6, C2×D40, C3×D40 [×2], C6×D20, C6×D40

Smallest permutation representation of C6×D40
On 240 points
Generators in S240
(1 66 178 99 229 135)(2 67 179 100 230 136)(3 68 180 101 231 137)(4 69 181 102 232 138)(5 70 182 103 233 139)(6 71 183 104 234 140)(7 72 184 105 235 141)(8 73 185 106 236 142)(9 74 186 107 237 143)(10 75 187 108 238 144)(11 76 188 109 239 145)(12 77 189 110 240 146)(13 78 190 111 201 147)(14 79 191 112 202 148)(15 80 192 113 203 149)(16 41 193 114 204 150)(17 42 194 115 205 151)(18 43 195 116 206 152)(19 44 196 117 207 153)(20 45 197 118 208 154)(21 46 198 119 209 155)(22 47 199 120 210 156)(23 48 200 81 211 157)(24 49 161 82 212 158)(25 50 162 83 213 159)(26 51 163 84 214 160)(27 52 164 85 215 121)(28 53 165 86 216 122)(29 54 166 87 217 123)(30 55 167 88 218 124)(31 56 168 89 219 125)(32 57 169 90 220 126)(33 58 170 91 221 127)(34 59 171 92 222 128)(35 60 172 93 223 129)(36 61 173 94 224 130)(37 62 174 95 225 131)(38 63 175 96 226 132)(39 64 176 97 227 133)(40 65 177 98 228 134)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 98)(2 97)(3 96)(4 95)(5 94)(6 93)(7 92)(8 91)(9 90)(10 89)(11 88)(12 87)(13 86)(14 85)(15 84)(16 83)(17 82)(18 81)(19 120)(20 119)(21 118)(22 117)(23 116)(24 115)(25 114)(26 113)(27 112)(28 111)(29 110)(30 109)(31 108)(32 107)(33 106)(34 105)(35 104)(36 103)(37 102)(38 101)(39 100)(40 99)(41 213)(42 212)(43 211)(44 210)(45 209)(46 208)(47 207)(48 206)(49 205)(50 204)(51 203)(52 202)(53 201)(54 240)(55 239)(56 238)(57 237)(58 236)(59 235)(60 234)(61 233)(62 232)(63 231)(64 230)(65 229)(66 228)(67 227)(68 226)(69 225)(70 224)(71 223)(72 222)(73 221)(74 220)(75 219)(76 218)(77 217)(78 216)(79 215)(80 214)(121 191)(122 190)(123 189)(124 188)(125 187)(126 186)(127 185)(128 184)(129 183)(130 182)(131 181)(132 180)(133 179)(134 178)(135 177)(136 176)(137 175)(138 174)(139 173)(140 172)(141 171)(142 170)(143 169)(144 168)(145 167)(146 166)(147 165)(148 164)(149 163)(150 162)(151 161)(152 200)(153 199)(154 198)(155 197)(156 196)(157 195)(158 194)(159 193)(160 192)

G:=sub<Sym(240)| (1,66,178,99,229,135)(2,67,179,100,230,136)(3,68,180,101,231,137)(4,69,181,102,232,138)(5,70,182,103,233,139)(6,71,183,104,234,140)(7,72,184,105,235,141)(8,73,185,106,236,142)(9,74,186,107,237,143)(10,75,187,108,238,144)(11,76,188,109,239,145)(12,77,189,110,240,146)(13,78,190,111,201,147)(14,79,191,112,202,148)(15,80,192,113,203,149)(16,41,193,114,204,150)(17,42,194,115,205,151)(18,43,195,116,206,152)(19,44,196,117,207,153)(20,45,197,118,208,154)(21,46,198,119,209,155)(22,47,199,120,210,156)(23,48,200,81,211,157)(24,49,161,82,212,158)(25,50,162,83,213,159)(26,51,163,84,214,160)(27,52,164,85,215,121)(28,53,165,86,216,122)(29,54,166,87,217,123)(30,55,167,88,218,124)(31,56,168,89,219,125)(32,57,169,90,220,126)(33,58,170,91,221,127)(34,59,171,92,222,128)(35,60,172,93,223,129)(36,61,173,94,224,130)(37,62,174,95,225,131)(38,63,175,96,226,132)(39,64,176,97,227,133)(40,65,177,98,228,134), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,98)(2,97)(3,96)(4,95)(5,94)(6,93)(7,92)(8,91)(9,90)(10,89)(11,88)(12,87)(13,86)(14,85)(15,84)(16,83)(17,82)(18,81)(19,120)(20,119)(21,118)(22,117)(23,116)(24,115)(25,114)(26,113)(27,112)(28,111)(29,110)(30,109)(31,108)(32,107)(33,106)(34,105)(35,104)(36,103)(37,102)(38,101)(39,100)(40,99)(41,213)(42,212)(43,211)(44,210)(45,209)(46,208)(47,207)(48,206)(49,205)(50,204)(51,203)(52,202)(53,201)(54,240)(55,239)(56,238)(57,237)(58,236)(59,235)(60,234)(61,233)(62,232)(63,231)(64,230)(65,229)(66,228)(67,227)(68,226)(69,225)(70,224)(71,223)(72,222)(73,221)(74,220)(75,219)(76,218)(77,217)(78,216)(79,215)(80,214)(121,191)(122,190)(123,189)(124,188)(125,187)(126,186)(127,185)(128,184)(129,183)(130,182)(131,181)(132,180)(133,179)(134,178)(135,177)(136,176)(137,175)(138,174)(139,173)(140,172)(141,171)(142,170)(143,169)(144,168)(145,167)(146,166)(147,165)(148,164)(149,163)(150,162)(151,161)(152,200)(153,199)(154,198)(155,197)(156,196)(157,195)(158,194)(159,193)(160,192)>;

G:=Group( (1,66,178,99,229,135)(2,67,179,100,230,136)(3,68,180,101,231,137)(4,69,181,102,232,138)(5,70,182,103,233,139)(6,71,183,104,234,140)(7,72,184,105,235,141)(8,73,185,106,236,142)(9,74,186,107,237,143)(10,75,187,108,238,144)(11,76,188,109,239,145)(12,77,189,110,240,146)(13,78,190,111,201,147)(14,79,191,112,202,148)(15,80,192,113,203,149)(16,41,193,114,204,150)(17,42,194,115,205,151)(18,43,195,116,206,152)(19,44,196,117,207,153)(20,45,197,118,208,154)(21,46,198,119,209,155)(22,47,199,120,210,156)(23,48,200,81,211,157)(24,49,161,82,212,158)(25,50,162,83,213,159)(26,51,163,84,214,160)(27,52,164,85,215,121)(28,53,165,86,216,122)(29,54,166,87,217,123)(30,55,167,88,218,124)(31,56,168,89,219,125)(32,57,169,90,220,126)(33,58,170,91,221,127)(34,59,171,92,222,128)(35,60,172,93,223,129)(36,61,173,94,224,130)(37,62,174,95,225,131)(38,63,175,96,226,132)(39,64,176,97,227,133)(40,65,177,98,228,134), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,98)(2,97)(3,96)(4,95)(5,94)(6,93)(7,92)(8,91)(9,90)(10,89)(11,88)(12,87)(13,86)(14,85)(15,84)(16,83)(17,82)(18,81)(19,120)(20,119)(21,118)(22,117)(23,116)(24,115)(25,114)(26,113)(27,112)(28,111)(29,110)(30,109)(31,108)(32,107)(33,106)(34,105)(35,104)(36,103)(37,102)(38,101)(39,100)(40,99)(41,213)(42,212)(43,211)(44,210)(45,209)(46,208)(47,207)(48,206)(49,205)(50,204)(51,203)(52,202)(53,201)(54,240)(55,239)(56,238)(57,237)(58,236)(59,235)(60,234)(61,233)(62,232)(63,231)(64,230)(65,229)(66,228)(67,227)(68,226)(69,225)(70,224)(71,223)(72,222)(73,221)(74,220)(75,219)(76,218)(77,217)(78,216)(79,215)(80,214)(121,191)(122,190)(123,189)(124,188)(125,187)(126,186)(127,185)(128,184)(129,183)(130,182)(131,181)(132,180)(133,179)(134,178)(135,177)(136,176)(137,175)(138,174)(139,173)(140,172)(141,171)(142,170)(143,169)(144,168)(145,167)(146,166)(147,165)(148,164)(149,163)(150,162)(151,161)(152,200)(153,199)(154,198)(155,197)(156,196)(157,195)(158,194)(159,193)(160,192) );

G=PermutationGroup([(1,66,178,99,229,135),(2,67,179,100,230,136),(3,68,180,101,231,137),(4,69,181,102,232,138),(5,70,182,103,233,139),(6,71,183,104,234,140),(7,72,184,105,235,141),(8,73,185,106,236,142),(9,74,186,107,237,143),(10,75,187,108,238,144),(11,76,188,109,239,145),(12,77,189,110,240,146),(13,78,190,111,201,147),(14,79,191,112,202,148),(15,80,192,113,203,149),(16,41,193,114,204,150),(17,42,194,115,205,151),(18,43,195,116,206,152),(19,44,196,117,207,153),(20,45,197,118,208,154),(21,46,198,119,209,155),(22,47,199,120,210,156),(23,48,200,81,211,157),(24,49,161,82,212,158),(25,50,162,83,213,159),(26,51,163,84,214,160),(27,52,164,85,215,121),(28,53,165,86,216,122),(29,54,166,87,217,123),(30,55,167,88,218,124),(31,56,168,89,219,125),(32,57,169,90,220,126),(33,58,170,91,221,127),(34,59,171,92,222,128),(35,60,172,93,223,129),(36,61,173,94,224,130),(37,62,174,95,225,131),(38,63,175,96,226,132),(39,64,176,97,227,133),(40,65,177,98,228,134)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,98),(2,97),(3,96),(4,95),(5,94),(6,93),(7,92),(8,91),(9,90),(10,89),(11,88),(12,87),(13,86),(14,85),(15,84),(16,83),(17,82),(18,81),(19,120),(20,119),(21,118),(22,117),(23,116),(24,115),(25,114),(26,113),(27,112),(28,111),(29,110),(30,109),(31,108),(32,107),(33,106),(34,105),(35,104),(36,103),(37,102),(38,101),(39,100),(40,99),(41,213),(42,212),(43,211),(44,210),(45,209),(46,208),(47,207),(48,206),(49,205),(50,204),(51,203),(52,202),(53,201),(54,240),(55,239),(56,238),(57,237),(58,236),(59,235),(60,234),(61,233),(62,232),(63,231),(64,230),(65,229),(66,228),(67,227),(68,226),(69,225),(70,224),(71,223),(72,222),(73,221),(74,220),(75,219),(76,218),(77,217),(78,216),(79,215),(80,214),(121,191),(122,190),(123,189),(124,188),(125,187),(126,186),(127,185),(128,184),(129,183),(130,182),(131,181),(132,180),(133,179),(134,178),(135,177),(136,176),(137,175),(138,174),(139,173),(140,172),(141,171),(142,170),(143,169),(144,168),(145,167),(146,166),(147,165),(148,164),(149,163),(150,162),(151,161),(152,200),(153,199),(154,198),(155,197),(156,196),(157,195),(158,194),(159,193),(160,192)])

138 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B5A5B6A···6F6G···6N8A8B8C8D10A···10F12A12B12C12D15A15B15C15D20A···20H24A···24H30A···30L40A···40P60A···60P120A···120AF
order122222223344556···66···6888810···10121212121515151520···2024···2430···3040···4060···60120···120
size1111202020201122221···120···2022222···2222222222···22···22···22···22···22···2

138 irreducible representations

dim11111111222222222222222222
type+++++++++++++
imageC1C2C2C2C3C6C6C6D4D4D5D8D10D10C3×D4C3×D4C3×D5D20D20C3×D8C6×D5C6×D5D40C3×D20C3×D20C3×D40
kernelC6×D40C3×D40C2×C120C6×D20C2×D40D40C2×C40C2×D20C60C2×C30C2×C24C30C24C2×C12C20C2×C10C2×C8C12C2×C6C10C8C2×C4C6C4C22C2
# reps1412282411244222444884168832

Matrix representation of C6×D40 in GL5(𝔽241)

2400000
015000
001500
00010
00001
,
10000
02195500
092000
000199227
00014194
,
10000
02195500
0922200
00022129
00019420

G:=sub<GL(5,GF(241))| [240,0,0,0,0,0,15,0,0,0,0,0,15,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,219,92,0,0,0,55,0,0,0,0,0,0,199,14,0,0,0,227,194],[1,0,0,0,0,0,219,92,0,0,0,55,22,0,0,0,0,0,221,194,0,0,0,29,20] >;

C6×D40 in GAP, Magma, Sage, TeX

C_6\times D_{40}
% in TeX

G:=Group("C6xD40");
// GroupNames label

G:=SmallGroup(480,696);
// by ID

G=gap.SmallGroup(480,696);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-5,590,394,2524,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^6=b^40=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽