Extensions 1→N→G→Q→1 with N=C24 and Q=Dic5

Direct product G=N×Q with N=C24 and Q=Dic5
dρLabelID
Dic5×C24480Dic5xC24480,91

Semidirect products G=N:Q with N=C24 and Q=Dic5
extensionφ:Q→Aut NdρLabelID
C241Dic5 = C1209C4φ: Dic5/C10C2 ⊆ Aut C24480C24:1Dic5480,178
C242Dic5 = C12010C4φ: Dic5/C10C2 ⊆ Aut C24480C24:2Dic5480,177
C243Dic5 = C3×C405C4φ: Dic5/C10C2 ⊆ Aut C24480C24:3Dic5480,96
C244Dic5 = C8×Dic15φ: Dic5/C10C2 ⊆ Aut C24480C24:4Dic5480,173
C245Dic5 = C12013C4φ: Dic5/C10C2 ⊆ Aut C24480C24:5Dic5480,175
C246Dic5 = C3×C406C4φ: Dic5/C10C2 ⊆ Aut C24480C24:6Dic5480,95
C247Dic5 = C3×C408C4φ: Dic5/C10C2 ⊆ Aut C24480C24:7Dic5480,93

Non-split extensions G=N.Q with N=C24 and Q=Dic5
extensionφ:Q→Aut NdρLabelID
C24.1Dic5 = C4.18D60φ: Dic5/C10C2 ⊆ Aut C242402C24.1Dic5480,179
C24.2Dic5 = C3×C40.6C4φ: Dic5/C10C2 ⊆ Aut C242402C24.2Dic5480,97
C24.3Dic5 = C153C32φ: Dic5/C10C2 ⊆ Aut C244802C24.3Dic5480,3
C24.4Dic5 = C2×C153C16φ: Dic5/C10C2 ⊆ Aut C24480C24.4Dic5480,171
C24.5Dic5 = C60.7C8φ: Dic5/C10C2 ⊆ Aut C242402C24.5Dic5480,172
C24.6Dic5 = C3×C20.4C8φ: Dic5/C10C2 ⊆ Aut C242402C24.6Dic5480,90
C24.7Dic5 = C3×C52C32central extension (φ=1)4802C24.7Dic5480,2
C24.8Dic5 = C6×C52C16central extension (φ=1)480C24.8Dic5480,89

׿
×
𝔽