Copied to
clipboard

G = C12010C4order 480 = 25·3·5

2nd semidirect product of C120 and C4 acting via C4/C2=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C12010C4, C242Dic5, C406Dic3, C82Dic15, C60.22Q8, C4.4Dic30, C22.8D60, C20.19Dic6, C30.17SD16, C12.19Dic10, (C2×C40).8S3, (C2×C8).6D15, (C2×C24).8D5, C32(C406C4), C53(C8⋊Dic3), (C2×C4).71D30, (C2×C6).14D20, C1510(C4.Q8), C30.39(C4⋊C4), C605C4.2C2, (C2×C120).12C2, C60.230(C2×C4), (C2×C20).385D6, (C2×C10).14D12, (C2×C30).100D4, C6.2(C40⋊C2), C6.7(C4⋊Dic5), C4.6(C2×Dic15), C2.3(C605C4), C2.2(C24⋊D5), C10.2(C24⋊C2), (C2×C12).387D10, C20.56(C2×Dic3), C12.35(C2×Dic5), (C2×C60).472C22, C10.14(C4⋊Dic3), SmallGroup(480,177)

Series: Derived Chief Lower central Upper central

C1C60 — C12010C4
C1C5C15C30C2×C30C2×C60C605C4 — C12010C4
C15C30C60 — C12010C4
C1C22C2×C4C2×C8

Generators and relations for C12010C4
 G = < a,b | a120=b4=1, bab-1=a59 >

Subgroups: 404 in 72 conjugacy classes, 47 normal (29 characteristic)
C1, C2, C2 [×2], C3, C4 [×2], C4 [×2], C22, C5, C6, C6 [×2], C8 [×2], C2×C4, C2×C4 [×2], C10, C10 [×2], Dic3 [×2], C12 [×2], C2×C6, C15, C4⋊C4 [×2], C2×C8, Dic5 [×2], C20 [×2], C2×C10, C24 [×2], C2×Dic3 [×2], C2×C12, C30, C30 [×2], C4.Q8, C40 [×2], C2×Dic5 [×2], C2×C20, C4⋊Dic3 [×2], C2×C24, Dic15 [×2], C60 [×2], C2×C30, C4⋊Dic5 [×2], C2×C40, C8⋊Dic3, C120 [×2], C2×Dic15 [×2], C2×C60, C406C4, C605C4 [×2], C2×C120, C12010C4
Quotients: C1, C2 [×3], C4 [×2], C22, S3, C2×C4, D4, Q8, D5, Dic3 [×2], D6, C4⋊C4, SD16 [×2], Dic5 [×2], D10, Dic6, D12, C2×Dic3, D15, C4.Q8, Dic10, D20, C2×Dic5, C24⋊C2 [×2], C4⋊Dic3, Dic15 [×2], D30, C40⋊C2 [×2], C4⋊Dic5, C8⋊Dic3, Dic30, D60, C2×Dic15, C406C4, C24⋊D5 [×2], C605C4, C12010C4

Smallest permutation representation of C12010C4
Regular action on 480 points
Generators in S480
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)(241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360)(361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480)
(1 129 466 303)(2 188 467 242)(3 127 468 301)(4 186 469 360)(5 125 470 299)(6 184 471 358)(7 123 472 297)(8 182 473 356)(9 121 474 295)(10 180 475 354)(11 239 476 293)(12 178 477 352)(13 237 478 291)(14 176 479 350)(15 235 480 289)(16 174 361 348)(17 233 362 287)(18 172 363 346)(19 231 364 285)(20 170 365 344)(21 229 366 283)(22 168 367 342)(23 227 368 281)(24 166 369 340)(25 225 370 279)(26 164 371 338)(27 223 372 277)(28 162 373 336)(29 221 374 275)(30 160 375 334)(31 219 376 273)(32 158 377 332)(33 217 378 271)(34 156 379 330)(35 215 380 269)(36 154 381 328)(37 213 382 267)(38 152 383 326)(39 211 384 265)(40 150 385 324)(41 209 386 263)(42 148 387 322)(43 207 388 261)(44 146 389 320)(45 205 390 259)(46 144 391 318)(47 203 392 257)(48 142 393 316)(49 201 394 255)(50 140 395 314)(51 199 396 253)(52 138 397 312)(53 197 398 251)(54 136 399 310)(55 195 400 249)(56 134 401 308)(57 193 402 247)(58 132 403 306)(59 191 404 245)(60 130 405 304)(61 189 406 243)(62 128 407 302)(63 187 408 241)(64 126 409 300)(65 185 410 359)(66 124 411 298)(67 183 412 357)(68 122 413 296)(69 181 414 355)(70 240 415 294)(71 179 416 353)(72 238 417 292)(73 177 418 351)(74 236 419 290)(75 175 420 349)(76 234 421 288)(77 173 422 347)(78 232 423 286)(79 171 424 345)(80 230 425 284)(81 169 426 343)(82 228 427 282)(83 167 428 341)(84 226 429 280)(85 165 430 339)(86 224 431 278)(87 163 432 337)(88 222 433 276)(89 161 434 335)(90 220 435 274)(91 159 436 333)(92 218 437 272)(93 157 438 331)(94 216 439 270)(95 155 440 329)(96 214 441 268)(97 153 442 327)(98 212 443 266)(99 151 444 325)(100 210 445 264)(101 149 446 323)(102 208 447 262)(103 147 448 321)(104 206 449 260)(105 145 450 319)(106 204 451 258)(107 143 452 317)(108 202 453 256)(109 141 454 315)(110 200 455 254)(111 139 456 313)(112 198 457 252)(113 137 458 311)(114 196 459 250)(115 135 460 309)(116 194 461 248)(117 133 462 307)(118 192 463 246)(119 131 464 305)(120 190 465 244)

G:=sub<Sym(480)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)(241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360)(361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480), (1,129,466,303)(2,188,467,242)(3,127,468,301)(4,186,469,360)(5,125,470,299)(6,184,471,358)(7,123,472,297)(8,182,473,356)(9,121,474,295)(10,180,475,354)(11,239,476,293)(12,178,477,352)(13,237,478,291)(14,176,479,350)(15,235,480,289)(16,174,361,348)(17,233,362,287)(18,172,363,346)(19,231,364,285)(20,170,365,344)(21,229,366,283)(22,168,367,342)(23,227,368,281)(24,166,369,340)(25,225,370,279)(26,164,371,338)(27,223,372,277)(28,162,373,336)(29,221,374,275)(30,160,375,334)(31,219,376,273)(32,158,377,332)(33,217,378,271)(34,156,379,330)(35,215,380,269)(36,154,381,328)(37,213,382,267)(38,152,383,326)(39,211,384,265)(40,150,385,324)(41,209,386,263)(42,148,387,322)(43,207,388,261)(44,146,389,320)(45,205,390,259)(46,144,391,318)(47,203,392,257)(48,142,393,316)(49,201,394,255)(50,140,395,314)(51,199,396,253)(52,138,397,312)(53,197,398,251)(54,136,399,310)(55,195,400,249)(56,134,401,308)(57,193,402,247)(58,132,403,306)(59,191,404,245)(60,130,405,304)(61,189,406,243)(62,128,407,302)(63,187,408,241)(64,126,409,300)(65,185,410,359)(66,124,411,298)(67,183,412,357)(68,122,413,296)(69,181,414,355)(70,240,415,294)(71,179,416,353)(72,238,417,292)(73,177,418,351)(74,236,419,290)(75,175,420,349)(76,234,421,288)(77,173,422,347)(78,232,423,286)(79,171,424,345)(80,230,425,284)(81,169,426,343)(82,228,427,282)(83,167,428,341)(84,226,429,280)(85,165,430,339)(86,224,431,278)(87,163,432,337)(88,222,433,276)(89,161,434,335)(90,220,435,274)(91,159,436,333)(92,218,437,272)(93,157,438,331)(94,216,439,270)(95,155,440,329)(96,214,441,268)(97,153,442,327)(98,212,443,266)(99,151,444,325)(100,210,445,264)(101,149,446,323)(102,208,447,262)(103,147,448,321)(104,206,449,260)(105,145,450,319)(106,204,451,258)(107,143,452,317)(108,202,453,256)(109,141,454,315)(110,200,455,254)(111,139,456,313)(112,198,457,252)(113,137,458,311)(114,196,459,250)(115,135,460,309)(116,194,461,248)(117,133,462,307)(118,192,463,246)(119,131,464,305)(120,190,465,244)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)(241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360)(361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480), (1,129,466,303)(2,188,467,242)(3,127,468,301)(4,186,469,360)(5,125,470,299)(6,184,471,358)(7,123,472,297)(8,182,473,356)(9,121,474,295)(10,180,475,354)(11,239,476,293)(12,178,477,352)(13,237,478,291)(14,176,479,350)(15,235,480,289)(16,174,361,348)(17,233,362,287)(18,172,363,346)(19,231,364,285)(20,170,365,344)(21,229,366,283)(22,168,367,342)(23,227,368,281)(24,166,369,340)(25,225,370,279)(26,164,371,338)(27,223,372,277)(28,162,373,336)(29,221,374,275)(30,160,375,334)(31,219,376,273)(32,158,377,332)(33,217,378,271)(34,156,379,330)(35,215,380,269)(36,154,381,328)(37,213,382,267)(38,152,383,326)(39,211,384,265)(40,150,385,324)(41,209,386,263)(42,148,387,322)(43,207,388,261)(44,146,389,320)(45,205,390,259)(46,144,391,318)(47,203,392,257)(48,142,393,316)(49,201,394,255)(50,140,395,314)(51,199,396,253)(52,138,397,312)(53,197,398,251)(54,136,399,310)(55,195,400,249)(56,134,401,308)(57,193,402,247)(58,132,403,306)(59,191,404,245)(60,130,405,304)(61,189,406,243)(62,128,407,302)(63,187,408,241)(64,126,409,300)(65,185,410,359)(66,124,411,298)(67,183,412,357)(68,122,413,296)(69,181,414,355)(70,240,415,294)(71,179,416,353)(72,238,417,292)(73,177,418,351)(74,236,419,290)(75,175,420,349)(76,234,421,288)(77,173,422,347)(78,232,423,286)(79,171,424,345)(80,230,425,284)(81,169,426,343)(82,228,427,282)(83,167,428,341)(84,226,429,280)(85,165,430,339)(86,224,431,278)(87,163,432,337)(88,222,433,276)(89,161,434,335)(90,220,435,274)(91,159,436,333)(92,218,437,272)(93,157,438,331)(94,216,439,270)(95,155,440,329)(96,214,441,268)(97,153,442,327)(98,212,443,266)(99,151,444,325)(100,210,445,264)(101,149,446,323)(102,208,447,262)(103,147,448,321)(104,206,449,260)(105,145,450,319)(106,204,451,258)(107,143,452,317)(108,202,453,256)(109,141,454,315)(110,200,455,254)(111,139,456,313)(112,198,457,252)(113,137,458,311)(114,196,459,250)(115,135,460,309)(116,194,461,248)(117,133,462,307)(118,192,463,246)(119,131,464,305)(120,190,465,244) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240),(241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360),(361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480)], [(1,129,466,303),(2,188,467,242),(3,127,468,301),(4,186,469,360),(5,125,470,299),(6,184,471,358),(7,123,472,297),(8,182,473,356),(9,121,474,295),(10,180,475,354),(11,239,476,293),(12,178,477,352),(13,237,478,291),(14,176,479,350),(15,235,480,289),(16,174,361,348),(17,233,362,287),(18,172,363,346),(19,231,364,285),(20,170,365,344),(21,229,366,283),(22,168,367,342),(23,227,368,281),(24,166,369,340),(25,225,370,279),(26,164,371,338),(27,223,372,277),(28,162,373,336),(29,221,374,275),(30,160,375,334),(31,219,376,273),(32,158,377,332),(33,217,378,271),(34,156,379,330),(35,215,380,269),(36,154,381,328),(37,213,382,267),(38,152,383,326),(39,211,384,265),(40,150,385,324),(41,209,386,263),(42,148,387,322),(43,207,388,261),(44,146,389,320),(45,205,390,259),(46,144,391,318),(47,203,392,257),(48,142,393,316),(49,201,394,255),(50,140,395,314),(51,199,396,253),(52,138,397,312),(53,197,398,251),(54,136,399,310),(55,195,400,249),(56,134,401,308),(57,193,402,247),(58,132,403,306),(59,191,404,245),(60,130,405,304),(61,189,406,243),(62,128,407,302),(63,187,408,241),(64,126,409,300),(65,185,410,359),(66,124,411,298),(67,183,412,357),(68,122,413,296),(69,181,414,355),(70,240,415,294),(71,179,416,353),(72,238,417,292),(73,177,418,351),(74,236,419,290),(75,175,420,349),(76,234,421,288),(77,173,422,347),(78,232,423,286),(79,171,424,345),(80,230,425,284),(81,169,426,343),(82,228,427,282),(83,167,428,341),(84,226,429,280),(85,165,430,339),(86,224,431,278),(87,163,432,337),(88,222,433,276),(89,161,434,335),(90,220,435,274),(91,159,436,333),(92,218,437,272),(93,157,438,331),(94,216,439,270),(95,155,440,329),(96,214,441,268),(97,153,442,327),(98,212,443,266),(99,151,444,325),(100,210,445,264),(101,149,446,323),(102,208,447,262),(103,147,448,321),(104,206,449,260),(105,145,450,319),(106,204,451,258),(107,143,452,317),(108,202,453,256),(109,141,454,315),(110,200,455,254),(111,139,456,313),(112,198,457,252),(113,137,458,311),(114,196,459,250),(115,135,460,309),(116,194,461,248),(117,133,462,307),(118,192,463,246),(119,131,464,305),(120,190,465,244)])

126 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F5A5B6A6B6C8A8B8C8D10A···10F12A12B12C12D15A15B15C15D20A···20H24A···24H30A···30L40A···40P60A···60P120A···120AF
order1222344444455666888810···10121212121515151520···2024···2430···3040···4060···60120···120
size1111222606060602222222222···2222222222···22···22···22···22···22···2

126 irreducible representations

dim1111222222222222222222222
type++++-++-+-+-++-+-+-+
imageC1C2C2C4S3Q8D4D5Dic3D6SD16Dic5D10Dic6D12D15Dic10D20C24⋊C2Dic15D30C40⋊C2Dic30D60C24⋊D5
kernelC12010C4C605C4C2×C120C120C2×C40C60C2×C30C2×C24C40C2×C20C30C24C2×C12C20C2×C10C2×C8C12C2×C6C10C8C2×C4C6C4C22C2
# reps121411122144222444884168832

Matrix representation of C12010C4 in GL5(𝔽241)

2400000
057600
023512200
00094166
000106200
,
1770000
0548900
019218700
000152236
00013889

G:=sub<GL(5,GF(241))| [240,0,0,0,0,0,57,235,0,0,0,6,122,0,0,0,0,0,94,106,0,0,0,166,200],[177,0,0,0,0,0,54,192,0,0,0,89,187,0,0,0,0,0,152,138,0,0,0,236,89] >;

C12010C4 in GAP, Magma, Sage, TeX

C_{120}\rtimes_{10}C_4
% in TeX

G:=Group("C120:10C4");
// GroupNames label

G:=SmallGroup(480,177);
// by ID

G=gap.SmallGroup(480,177);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,64,675,80,2693,18822]);
// Polycyclic

G:=Group<a,b|a^120=b^4=1,b*a*b^-1=a^59>;
// generators/relations

׿
×
𝔽