# Extensions 1→N→G→Q→1 with N=C22 and Q=C2×Dic15

Direct product G=N×Q with N=C22 and Q=C2×Dic15
dρLabelID
C23×Dic15480C2^3xDic15480,1178

Semidirect products G=N:Q with N=C22 and Q=C2×Dic15
extensionφ:Q→Aut NdρLabelID
C22⋊(C2×Dic15) = C2×A4⋊Dic5φ: C2×Dic15/C2×C10S3 ⊆ Aut C22120C2^2:(C2xDic15)480,1033
C222(C2×Dic15) = D4×Dic15φ: C2×Dic15/Dic15C2 ⊆ Aut C22240C2^2:2(C2xDic15)480,899
C223(C2×Dic15) = C2×C30.38D4φ: C2×Dic15/C2×C30C2 ⊆ Aut C22240C2^2:3(C2xDic15)480,917

Non-split extensions G=N.Q with N=C22 and Q=C2×Dic15
extensionφ:Q→Aut NdρLabelID
C22.1(C2×Dic15) = D4.Dic15φ: C2×Dic15/Dic15C2 ⊆ Aut C222404C2^2.1(C2xDic15)480,913
C22.2(C2×Dic15) = C60.8D4φ: C2×Dic15/C2×C30C2 ⊆ Aut C221204C2^2.2(C2xDic15)480,193
C22.3(C2×Dic15) = C23.7D30φ: C2×Dic15/C2×C30C2 ⊆ Aut C221204C2^2.3(C2xDic15)480,194
C22.4(C2×Dic15) = C60.10D4φ: C2×Dic15/C2×C30C2 ⊆ Aut C222404C2^2.4(C2xDic15)480,196
C22.5(C2×Dic15) = C23.26D30φ: C2×Dic15/C2×C30C2 ⊆ Aut C22240C2^2.5(C2xDic15)480,891
C22.6(C2×Dic15) = C4×C153C8central extension (φ=1)480C2^2.6(C2xDic15)480,162
C22.7(C2×Dic15) = C42.D15central extension (φ=1)480C2^2.7(C2xDic15)480,163
C22.8(C2×Dic15) = C605C8central extension (φ=1)480C2^2.8(C2xDic15)480,164
C22.9(C2×Dic15) = C60.212D4central extension (φ=1)240C2^2.9(C2xDic15)480,190
C22.10(C2×Dic15) = C30.29C42central extension (φ=1)480C2^2.10(C2xDic15)480,191
C22.11(C2×Dic15) = C22×C153C8central extension (φ=1)480C2^2.11(C2xDic15)480,885
C22.12(C2×Dic15) = C2×C60.7C4central extension (φ=1)240C2^2.12(C2xDic15)480,886
C22.13(C2×Dic15) = C2×C4×Dic15central extension (φ=1)480C2^2.13(C2xDic15)480,887
C22.14(C2×Dic15) = C2×C605C4central extension (φ=1)480C2^2.14(C2xDic15)480,890

׿
×
𝔽