direct product, abelian, monomial, 2-elementary
Aliases: C2×C30, SmallGroup(60,13)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2×C30 |
C1 — C2×C30 |
C1 — C2×C30 |
Generators and relations for C2×C30
G = < a,b | a2=b30=1, ab=ba >
(1 51)(2 52)(3 53)(4 54)(5 55)(6 56)(7 57)(8 58)(9 59)(10 60)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 49)(30 50)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
G:=sub<Sym(60)| (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,57)(8,58)(9,59)(10,60)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)>;
G:=Group( (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,57)(8,58)(9,59)(10,60)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60) );
G=PermutationGroup([[(1,51),(2,52),(3,53),(4,54),(5,55),(6,56),(7,57),(8,58),(9,59),(10,60),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,49),(30,50)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)]])
C2×C30 is a maximal subgroup of
C15⋊7D4
60 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 5A | 5B | 5C | 5D | 6A | ··· | 6F | 10A | ··· | 10L | 15A | ··· | 15H | 30A | ··· | 30X |
order | 1 | 2 | 2 | 2 | 3 | 3 | 5 | 5 | 5 | 5 | 6 | ··· | 6 | 10 | ··· | 10 | 15 | ··· | 15 | 30 | ··· | 30 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | ||||||
image | C1 | C2 | C3 | C5 | C6 | C10 | C15 | C30 |
kernel | C2×C30 | C30 | C2×C10 | C2×C6 | C10 | C6 | C22 | C2 |
# reps | 1 | 3 | 2 | 4 | 6 | 12 | 8 | 24 |
Matrix representation of C2×C30 ►in GL2(𝔽31) generated by
30 | 0 |
0 | 1 |
5 | 0 |
0 | 29 |
G:=sub<GL(2,GF(31))| [30,0,0,1],[5,0,0,29] >;
C2×C30 in GAP, Magma, Sage, TeX
C_2\times C_{30}
% in TeX
G:=Group("C2xC30");
// GroupNames label
G:=SmallGroup(60,13);
// by ID
G=gap.SmallGroup(60,13);
# by ID
G:=PCGroup([4,-2,-2,-3,-5]);
// Polycyclic
G:=Group<a,b|a^2=b^30=1,a*b=b*a>;
// generators/relations
Export