Extensions 1→N→G→Q→1 with N=C2 and Q=D125D5

Direct product G=N×Q with N=C2 and Q=D125D5
dρLabelID
C2×D125D5240C2xD12:5D5480,1084


Non-split extensions G=N.Q with N=C2 and Q=D125D5
extensionφ:Q→Aut NdρLabelID
C2.1(D125D5) = Dic3017C4central extension (φ=1)480C2.1(D12:5D5)480,409
C2.2(D125D5) = (C4×D5)⋊Dic3central extension (φ=1)240C2.2(D12:5D5)480,434
C2.3(D125D5) = D6.(C4×D5)central extension (φ=1)240C2.3(D12:5D5)480,474
C2.4(D125D5) = Dic5×D12central extension (φ=1)240C2.4(D12:5D5)480,491
C2.5(D125D5) = D6⋊(C4×D5)central extension (φ=1)240C2.5(D12:5D5)480,516
C2.6(D125D5) = Dic15.Q8central stem extension (φ=1)480C2.6(D12:5D5)480,412
C2.7(D125D5) = C605C4⋊C2central stem extension (φ=1)240C2.7(D12:5D5)480,418
C2.8(D125D5) = C60.68D4central stem extension (φ=1)240C2.8(D12:5D5)480,436
C2.9(D125D5) = (C2×C12).D10central stem extension (φ=1)240C2.9(D12:5D5)480,437
C2.10(D125D5) = C5⋊(C423S3)central stem extension (φ=1)240C2.10(D12:5D5)480,448
C2.11(D125D5) = C60.69D4central stem extension (φ=1)240C2.11(D12:5D5)480,449
C2.12(D125D5) = C20.Dic6central stem extension (φ=1)480C2.12(D12:5D5)480,464
C2.13(D125D5) = (C2×D12).D5central stem extension (φ=1)240C2.13(D12:5D5)480,499
C2.14(D125D5) = D63Dic10central stem extension (φ=1)240C2.14(D12:5D5)480,508
C2.15(D125D5) = D6⋊C4⋊D5central stem extension (φ=1)240C2.15(D12:5D5)480,523
C2.16(D125D5) = C60⋊D4central stem extension (φ=1)240C2.16(D12:5D5)480,525
C2.17(D125D5) = Dic152D4central stem extension (φ=1)240C2.17(D12:5D5)480,529
C2.18(D125D5) = D6.9D20central stem extension (φ=1)240C2.18(D12:5D5)480,533
C2.19(D125D5) = Dic15.10D4central stem extension (φ=1)240C2.19(D12:5D5)480,538

׿
×
𝔽