Copied to
clipboard

G = D125D5order 240 = 24·3·5

The semidirect product of D12 and D5 acting through Inn(D12)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D125D5, D6.2D10, C20.17D6, D10.10D6, C12.27D10, C30.9C23, Dic3010C2, C60.20C22, Dic5.19D6, Dic15.4C22, (C4×D5)⋊1S3, (C5×D12)⋊2C2, (D5×C12)⋊1C2, C53(C4○D12), C156(C4○D4), C15⋊D42C2, C4.13(S3×D5), C32(D42D5), (S3×Dic5)⋊2C2, C6.9(C22×D5), C10.9(C22×S3), (S3×C10).2C22, (C6×D5).11C22, (C3×Dic5).13C22, C2.13(C2×S3×D5), SmallGroup(240,133)

Series: Derived Chief Lower central Upper central

C1C30 — D125D5
C1C5C15C30C6×D5C15⋊D4 — D125D5
C15C30 — D125D5
C1C2C4

Generators and relations for D125D5
 G = < a,b,c,d | a12=b2=c5=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a6b, dcd=c-1 >

Subgroups: 320 in 80 conjugacy classes, 32 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C2×C4, D4, Q8, D5, C10, C10, Dic3, C12, C12, D6, C2×C6, C15, C4○D4, Dic5, Dic5, C20, D10, C2×C10, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C5×S3, C3×D5, C30, Dic10, C4×D5, C2×Dic5, C5⋊D4, C5×D4, C4○D12, C3×Dic5, Dic15, C60, C6×D5, S3×C10, D42D5, S3×Dic5, C15⋊D4, D5×C12, C5×D12, Dic30, D125D5
Quotients: C1, C2, C22, S3, C23, D5, D6, C4○D4, D10, C22×S3, C22×D5, C4○D12, S3×D5, D42D5, C2×S3×D5, D125D5

Smallest permutation representation of D125D5
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 87)(2 86)(3 85)(4 96)(5 95)(6 94)(7 93)(8 92)(9 91)(10 90)(11 89)(12 88)(13 38)(14 37)(15 48)(16 47)(17 46)(18 45)(19 44)(20 43)(21 42)(22 41)(23 40)(24 39)(25 101)(26 100)(27 99)(28 98)(29 97)(30 108)(31 107)(32 106)(33 105)(34 104)(35 103)(36 102)(49 110)(50 109)(51 120)(52 119)(53 118)(54 117)(55 116)(56 115)(57 114)(58 113)(59 112)(60 111)(61 80)(62 79)(63 78)(64 77)(65 76)(66 75)(67 74)(68 73)(69 84)(70 83)(71 82)(72 81)
(1 22 55 27 79)(2 23 56 28 80)(3 24 57 29 81)(4 13 58 30 82)(5 14 59 31 83)(6 15 60 32 84)(7 16 49 33 73)(8 17 50 34 74)(9 18 51 35 75)(10 19 52 36 76)(11 20 53 25 77)(12 21 54 26 78)(37 112 107 70 95)(38 113 108 71 96)(39 114 97 72 85)(40 115 98 61 86)(41 116 99 62 87)(42 117 100 63 88)(43 118 101 64 89)(44 119 102 65 90)(45 120 103 66 91)(46 109 104 67 92)(47 110 105 68 93)(48 111 106 69 94)
(1 79)(2 80)(3 81)(4 82)(5 83)(6 84)(7 73)(8 74)(9 75)(10 76)(11 77)(12 78)(13 30)(14 31)(15 32)(16 33)(17 34)(18 35)(19 36)(20 25)(21 26)(22 27)(23 28)(24 29)(37 101)(38 102)(39 103)(40 104)(41 105)(42 106)(43 107)(44 108)(45 97)(46 98)(47 99)(48 100)(61 92)(62 93)(63 94)(64 95)(65 96)(66 85)(67 86)(68 87)(69 88)(70 89)(71 90)(72 91)(109 115)(110 116)(111 117)(112 118)(113 119)(114 120)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,87)(2,86)(3,85)(4,96)(5,95)(6,94)(7,93)(8,92)(9,91)(10,90)(11,89)(12,88)(13,38)(14,37)(15,48)(16,47)(17,46)(18,45)(19,44)(20,43)(21,42)(22,41)(23,40)(24,39)(25,101)(26,100)(27,99)(28,98)(29,97)(30,108)(31,107)(32,106)(33,105)(34,104)(35,103)(36,102)(49,110)(50,109)(51,120)(52,119)(53,118)(54,117)(55,116)(56,115)(57,114)(58,113)(59,112)(60,111)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,84)(70,83)(71,82)(72,81), (1,22,55,27,79)(2,23,56,28,80)(3,24,57,29,81)(4,13,58,30,82)(5,14,59,31,83)(6,15,60,32,84)(7,16,49,33,73)(8,17,50,34,74)(9,18,51,35,75)(10,19,52,36,76)(11,20,53,25,77)(12,21,54,26,78)(37,112,107,70,95)(38,113,108,71,96)(39,114,97,72,85)(40,115,98,61,86)(41,116,99,62,87)(42,117,100,63,88)(43,118,101,64,89)(44,119,102,65,90)(45,120,103,66,91)(46,109,104,67,92)(47,110,105,68,93)(48,111,106,69,94), (1,79)(2,80)(3,81)(4,82)(5,83)(6,84)(7,73)(8,74)(9,75)(10,76)(11,77)(12,78)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35)(19,36)(20,25)(21,26)(22,27)(23,28)(24,29)(37,101)(38,102)(39,103)(40,104)(41,105)(42,106)(43,107)(44,108)(45,97)(46,98)(47,99)(48,100)(61,92)(62,93)(63,94)(64,95)(65,96)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(109,115)(110,116)(111,117)(112,118)(113,119)(114,120)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,87)(2,86)(3,85)(4,96)(5,95)(6,94)(7,93)(8,92)(9,91)(10,90)(11,89)(12,88)(13,38)(14,37)(15,48)(16,47)(17,46)(18,45)(19,44)(20,43)(21,42)(22,41)(23,40)(24,39)(25,101)(26,100)(27,99)(28,98)(29,97)(30,108)(31,107)(32,106)(33,105)(34,104)(35,103)(36,102)(49,110)(50,109)(51,120)(52,119)(53,118)(54,117)(55,116)(56,115)(57,114)(58,113)(59,112)(60,111)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,84)(70,83)(71,82)(72,81), (1,22,55,27,79)(2,23,56,28,80)(3,24,57,29,81)(4,13,58,30,82)(5,14,59,31,83)(6,15,60,32,84)(7,16,49,33,73)(8,17,50,34,74)(9,18,51,35,75)(10,19,52,36,76)(11,20,53,25,77)(12,21,54,26,78)(37,112,107,70,95)(38,113,108,71,96)(39,114,97,72,85)(40,115,98,61,86)(41,116,99,62,87)(42,117,100,63,88)(43,118,101,64,89)(44,119,102,65,90)(45,120,103,66,91)(46,109,104,67,92)(47,110,105,68,93)(48,111,106,69,94), (1,79)(2,80)(3,81)(4,82)(5,83)(6,84)(7,73)(8,74)(9,75)(10,76)(11,77)(12,78)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35)(19,36)(20,25)(21,26)(22,27)(23,28)(24,29)(37,101)(38,102)(39,103)(40,104)(41,105)(42,106)(43,107)(44,108)(45,97)(46,98)(47,99)(48,100)(61,92)(62,93)(63,94)(64,95)(65,96)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(109,115)(110,116)(111,117)(112,118)(113,119)(114,120) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,87),(2,86),(3,85),(4,96),(5,95),(6,94),(7,93),(8,92),(9,91),(10,90),(11,89),(12,88),(13,38),(14,37),(15,48),(16,47),(17,46),(18,45),(19,44),(20,43),(21,42),(22,41),(23,40),(24,39),(25,101),(26,100),(27,99),(28,98),(29,97),(30,108),(31,107),(32,106),(33,105),(34,104),(35,103),(36,102),(49,110),(50,109),(51,120),(52,119),(53,118),(54,117),(55,116),(56,115),(57,114),(58,113),(59,112),(60,111),(61,80),(62,79),(63,78),(64,77),(65,76),(66,75),(67,74),(68,73),(69,84),(70,83),(71,82),(72,81)], [(1,22,55,27,79),(2,23,56,28,80),(3,24,57,29,81),(4,13,58,30,82),(5,14,59,31,83),(6,15,60,32,84),(7,16,49,33,73),(8,17,50,34,74),(9,18,51,35,75),(10,19,52,36,76),(11,20,53,25,77),(12,21,54,26,78),(37,112,107,70,95),(38,113,108,71,96),(39,114,97,72,85),(40,115,98,61,86),(41,116,99,62,87),(42,117,100,63,88),(43,118,101,64,89),(44,119,102,65,90),(45,120,103,66,91),(46,109,104,67,92),(47,110,105,68,93),(48,111,106,69,94)], [(1,79),(2,80),(3,81),(4,82),(5,83),(6,84),(7,73),(8,74),(9,75),(10,76),(11,77),(12,78),(13,30),(14,31),(15,32),(16,33),(17,34),(18,35),(19,36),(20,25),(21,26),(22,27),(23,28),(24,29),(37,101),(38,102),(39,103),(40,104),(41,105),(42,106),(43,107),(44,108),(45,97),(46,98),(47,99),(48,100),(61,92),(62,93),(63,94),(64,95),(65,96),(66,85),(67,86),(68,87),(69,88),(70,89),(71,90),(72,91),(109,115),(110,116),(111,117),(112,118),(113,119),(114,120)]])

D125D5 is a maximal subgroup of
D124F5  D122F5  D24⋊D5  Dic60⋊C2  C40.31D6  D247D5  D1210D10  D12.24D10  D12.27D10  D20.14D6  D12.2F5  D12.F5  D20.39D6  D5×C4○D12  D2026D6  S3×D42D5  D2013D6  D12.29D10  D2016D6
D125D5 is a maximal quotient of
Dic3017C4  Dic15.Q8  C605C4⋊C2  (C4×D5)⋊Dic3  C60.68D4  (C2×C12).D10  C5⋊(C423S3)  C60.69D4  C20.Dic6  D6.(C4×D5)  Dic5×D12  (C2×D12).D5  D63Dic10  D6⋊(C4×D5)  D6⋊C4⋊D5  C60⋊D4  Dic152D4  D6.9D20  Dic15.10D4

36 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E5A5B6A6B6C10A10B10C10D10E10F12A12B12C12D15A15B20A20B30A30B60A60B60C60D
order12222344444556661010101010101212121215152020303060606060
size11661022553030222101022121212122210104444444444

36 irreducible representations

dim1111112222222224444
type++++++++++++++-+-
imageC1C2C2C2C2C2S3D5D6D6D6C4○D4D10D10C4○D12S3×D5D42D5C2×S3×D5D125D5
kernelD125D5S3×Dic5C15⋊D4D5×C12C5×D12Dic30C4×D5D12Dic5C20D10C15C12D6C5C4C3C2C1
# reps1221111211122442224

Matrix representation of D125D5 in GL4(𝔽61) generated by

1000
0100
00320
00021
,
1000
0100
00021
00320
,
0100
604300
0010
0001
,
0100
1000
0010
00060
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,32,0,0,0,0,21],[1,0,0,0,0,1,0,0,0,0,0,32,0,0,21,0],[0,60,0,0,1,43,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,60] >;

D125D5 in GAP, Magma, Sage, TeX

D_{12}\rtimes_5D_5
% in TeX

G:=Group("D12:5D5");
// GroupNames label

G:=SmallGroup(240,133);
// by ID

G=gap.SmallGroup(240,133);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,121,116,50,490,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^5=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^6*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽