Extensions 1→N→G→Q→1 with N=C22 and Q=C5×S4

Direct product G=N×Q with N=C22 and Q=C5×S4

Semidirect products G=N:Q with N=C22 and Q=C5×S4
extensionφ:Q→Aut NdρLabelID
C22⋊(C5×S4) = C5×C22⋊S4φ: C5×S4/C2×C10S3 ⊆ Aut C22406C2^2:(C5xS4)480,1200
C222(C5×S4) = C5×A4⋊D4φ: C5×S4/C5×A4C2 ⊆ Aut C22606C2^2:2(C5xS4)480,1023

Non-split extensions G=N.Q with N=C22 and Q=C5×S4
extensionφ:Q→Aut NdρLabelID
C22.(C5×S4) = C5×C42⋊S3φ: C5×S4/C2×C10S3 ⊆ Aut C22603C2^2.(C5xS4)480,254
C22.2(C5×S4) = C5×Q8.D6φ: C5×S4/C5×A4C2 ⊆ Aut C22804C2^2.2(C5xS4)480,1018
C22.3(C5×S4) = C5×Q8⋊Dic3central extension (φ=1)160C2^2.3(C5xS4)480,256
C22.4(C5×S4) = C10×CSU2(𝔽3)central extension (φ=1)160C2^2.4(C5xS4)480,1016
C22.5(C5×S4) = C10×GL2(𝔽3)central extension (φ=1)80C2^2.5(C5xS4)480,1017
C22.6(C5×S4) = C10×A4⋊C4central extension (φ=1)120C2^2.6(C5xS4)480,1022