direct product, metabelian, soluble, monomial, A-group
Aliases: C5×A4, C22⋊C15, (C2×C10)⋊C3, SmallGroup(60,9)
Series: Derived ►Chief ►Lower central ►Upper central
C22 — C5×A4 |
Generators and relations for C5×A4
G = < a,b,c,d | a5=b2=c2=d3=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, dcd-1=b >
Character table of C5×A4
class | 1 | 2 | 3A | 3B | 5A | 5B | 5C | 5D | 10A | 10B | 10C | 10D | 15A | 15B | 15C | 15D | 15E | 15F | 15G | 15H | |
size | 1 | 3 | 4 | 4 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ3 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | ζ52 | ζ53 | ζ54 | ζ5 | ζ52 | ζ54 | ζ53 | ζ5 | ζ54 | ζ53 | ζ54 | ζ5 | ζ5 | ζ52 | ζ53 | ζ52 | linear of order 5 |
ρ5 | 1 | 1 | 1 | 1 | ζ53 | ζ52 | ζ5 | ζ54 | ζ53 | ζ5 | ζ52 | ζ54 | ζ5 | ζ52 | ζ5 | ζ54 | ζ54 | ζ53 | ζ52 | ζ53 | linear of order 5 |
ρ6 | 1 | 1 | 1 | 1 | ζ5 | ζ54 | ζ52 | ζ53 | ζ5 | ζ52 | ζ54 | ζ53 | ζ52 | ζ54 | ζ52 | ζ53 | ζ53 | ζ5 | ζ54 | ζ5 | linear of order 5 |
ρ7 | 1 | 1 | 1 | 1 | ζ54 | ζ5 | ζ53 | ζ52 | ζ54 | ζ53 | ζ5 | ζ52 | ζ53 | ζ5 | ζ53 | ζ52 | ζ52 | ζ54 | ζ5 | ζ54 | linear of order 5 |
ρ8 | 1 | 1 | ζ3 | ζ32 | ζ54 | ζ5 | ζ53 | ζ52 | ζ54 | ζ53 | ζ5 | ζ52 | ζ32ζ53 | ζ3ζ5 | ζ3ζ53 | ζ3ζ52 | ζ32ζ52 | ζ32ζ54 | ζ32ζ5 | ζ3ζ54 | linear of order 15 |
ρ9 | 1 | 1 | ζ32 | ζ3 | ζ52 | ζ53 | ζ54 | ζ5 | ζ52 | ζ54 | ζ53 | ζ5 | ζ3ζ54 | ζ32ζ53 | ζ32ζ54 | ζ32ζ5 | ζ3ζ5 | ζ3ζ52 | ζ3ζ53 | ζ32ζ52 | linear of order 15 |
ρ10 | 1 | 1 | ζ3 | ζ32 | ζ53 | ζ52 | ζ5 | ζ54 | ζ53 | ζ5 | ζ52 | ζ54 | ζ32ζ5 | ζ3ζ52 | ζ3ζ5 | ζ3ζ54 | ζ32ζ54 | ζ32ζ53 | ζ32ζ52 | ζ3ζ53 | linear of order 15 |
ρ11 | 1 | 1 | ζ32 | ζ3 | ζ53 | ζ52 | ζ5 | ζ54 | ζ53 | ζ5 | ζ52 | ζ54 | ζ3ζ5 | ζ32ζ52 | ζ32ζ5 | ζ32ζ54 | ζ3ζ54 | ζ3ζ53 | ζ3ζ52 | ζ32ζ53 | linear of order 15 |
ρ12 | 1 | 1 | ζ3 | ζ32 | ζ5 | ζ54 | ζ52 | ζ53 | ζ5 | ζ52 | ζ54 | ζ53 | ζ32ζ52 | ζ3ζ54 | ζ3ζ52 | ζ3ζ53 | ζ32ζ53 | ζ32ζ5 | ζ32ζ54 | ζ3ζ5 | linear of order 15 |
ρ13 | 1 | 1 | ζ3 | ζ32 | ζ52 | ζ53 | ζ54 | ζ5 | ζ52 | ζ54 | ζ53 | ζ5 | ζ32ζ54 | ζ3ζ53 | ζ3ζ54 | ζ3ζ5 | ζ32ζ5 | ζ32ζ52 | ζ32ζ53 | ζ3ζ52 | linear of order 15 |
ρ14 | 1 | 1 | ζ32 | ζ3 | ζ5 | ζ54 | ζ52 | ζ53 | ζ5 | ζ52 | ζ54 | ζ53 | ζ3ζ52 | ζ32ζ54 | ζ32ζ52 | ζ32ζ53 | ζ3ζ53 | ζ3ζ5 | ζ3ζ54 | ζ32ζ5 | linear of order 15 |
ρ15 | 1 | 1 | ζ32 | ζ3 | ζ54 | ζ5 | ζ53 | ζ52 | ζ54 | ζ53 | ζ5 | ζ52 | ζ3ζ53 | ζ32ζ5 | ζ32ζ53 | ζ32ζ52 | ζ3ζ52 | ζ3ζ54 | ζ3ζ5 | ζ32ζ54 | linear of order 15 |
ρ16 | 3 | -1 | 0 | 0 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ17 | 3 | -1 | 0 | 0 | 3ζ52 | 3ζ53 | 3ζ54 | 3ζ5 | -ζ52 | -ζ54 | -ζ53 | -ζ5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ18 | 3 | -1 | 0 | 0 | 3ζ5 | 3ζ54 | 3ζ52 | 3ζ53 | -ζ5 | -ζ52 | -ζ54 | -ζ53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ19 | 3 | -1 | 0 | 0 | 3ζ53 | 3ζ52 | 3ζ5 | 3ζ54 | -ζ53 | -ζ5 | -ζ52 | -ζ54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ20 | 3 | -1 | 0 | 0 | 3ζ54 | 3ζ5 | 3ζ53 | 3ζ52 | -ζ54 | -ζ53 | -ζ5 | -ζ52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 11)(7 12)(8 13)(9 14)(10 15)
(6 16 11)(7 17 12)(8 18 13)(9 19 14)(10 20 15)
G:=sub<Sym(20)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15), (6,16,11)(7,17,12)(8,18,13)(9,19,14)(10,20,15)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15), (6,16,11)(7,17,12)(8,18,13)(9,19,14)(10,20,15) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,11),(7,12),(8,13),(9,14),(10,15)], [(6,16,11),(7,17,12),(8,18,13),(9,19,14),(10,20,15)]])
G:=TransitiveGroup(20,14);
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 13)(2 14)(3 15)(4 11)(5 12)(16 22)(17 23)(18 24)(19 25)(20 21)
(1 13)(2 14)(3 15)(4 11)(5 12)(6 30)(7 26)(8 27)(9 28)(10 29)
(1 27 17)(2 28 18)(3 29 19)(4 30 20)(5 26 16)(6 21 11)(7 22 12)(8 23 13)(9 24 14)(10 25 15)
G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,13)(2,14)(3,15)(4,11)(5,12)(16,22)(17,23)(18,24)(19,25)(20,21), (1,13)(2,14)(3,15)(4,11)(5,12)(6,30)(7,26)(8,27)(9,28)(10,29), (1,27,17)(2,28,18)(3,29,19)(4,30,20)(5,26,16)(6,21,11)(7,22,12)(8,23,13)(9,24,14)(10,25,15)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,13)(2,14)(3,15)(4,11)(5,12)(16,22)(17,23)(18,24)(19,25)(20,21), (1,13)(2,14)(3,15)(4,11)(5,12)(6,30)(7,26)(8,27)(9,28)(10,29), (1,27,17)(2,28,18)(3,29,19)(4,30,20)(5,26,16)(6,21,11)(7,22,12)(8,23,13)(9,24,14)(10,25,15) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,13),(2,14),(3,15),(4,11),(5,12),(16,22),(17,23),(18,24),(19,25),(20,21)], [(1,13),(2,14),(3,15),(4,11),(5,12),(6,30),(7,26),(8,27),(9,28),(10,29)], [(1,27,17),(2,28,18),(3,29,19),(4,30,20),(5,26,16),(6,21,11),(7,22,12),(8,23,13),(9,24,14),(10,25,15)]])
G:=TransitiveGroup(30,11);
C5×A4 is a maximal subgroup of
C5⋊S4
Matrix representation of C5×A4 ►in GL3(𝔽11) generated by
3 | 0 | 0 |
0 | 3 | 0 |
0 | 0 | 3 |
0 | 6 | 5 |
0 | 10 | 0 |
9 | 10 | 0 |
10 | 0 | 0 |
2 | 0 | 1 |
2 | 1 | 0 |
0 | 6 | 0 |
9 | 10 | 0 |
0 | 10 | 1 |
G:=sub<GL(3,GF(11))| [3,0,0,0,3,0,0,0,3],[0,0,9,6,10,10,5,0,0],[10,2,2,0,0,1,0,1,0],[0,9,0,6,10,10,0,0,1] >;
C5×A4 in GAP, Magma, Sage, TeX
C_5\times A_4
% in TeX
G:=Group("C5xA4");
// GroupNames label
G:=SmallGroup(60,9);
// by ID
G=gap.SmallGroup(60,9);
# by ID
G:=PCGroup([4,-3,-5,-2,2,362,723]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^2=c^2=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations
Export
Subgroup lattice of C5×A4 in TeX
Character table of C5×A4 in TeX