Extensions 1→N→G→Q→1 with N=D4×D5 and Q=S3

Direct product G=N×Q with N=D4×D5 and Q=S3

Semidirect products G=N:Q with N=D4×D5 and Q=S3
extensionφ:Q→Out NdρLabelID
(D4×D5)⋊1S3 = D5×D4⋊S3φ: S3/C3C2 ⊆ Out D4×D51208+(D4xD5):1S3480,553
(D4×D5)⋊2S3 = D1210D10φ: S3/C3C2 ⊆ Out D4×D51208-(D4xD5):2S3480,565
(D4×D5)⋊3S3 = D20.9D6φ: S3/C3C2 ⊆ Out D4×D51208+(D4xD5):3S3480,567
(D4×D5)⋊4S3 = D2013D6φ: S3/C3C2 ⊆ Out D4×D51208-(D4xD5):4S3480,1101
(D4×D5)⋊5S3 = D2014D6φ: S3/C3C2 ⊆ Out D4×D51208+(D4xD5):5S3480,1102
(D4×D5)⋊6S3 = D5×D42S3φ: trivial image1208-(D4xD5):6S3480,1098

Non-split extensions G=N.Q with N=D4×D5 and Q=S3
extensionφ:Q→Out NdρLabelID
(D4×D5).1S3 = D5×D4.S3φ: S3/C3C2 ⊆ Out D4×D51208-(D4xD5).1S3480,559
(D4×D5).2S3 = D20⋊Dic3φ: S3/C3C2 ⊆ Out D4×D51208(D4xD5).2S3480,312
(D4×D5).3S3 = D4×C3⋊F5φ: S3/C3C2 ⊆ Out D4×D5608(D4xD5).3S3480,1067