Extensions 1→N→G→Q→1 with N=C6×Q8 and Q=C10

Direct product G=N×Q with N=C6×Q8 and Q=C10
dρLabelID
Q8×C2×C30480Q8xC2xC30480,1182

Semidirect products G=N:Q with N=C6×Q8 and Q=C10
extensionφ:Q→Out NdρLabelID
(C6×Q8)⋊1C10 = C10×Q82S3φ: C10/C5C2 ⊆ Out C6×Q8240(C6xQ8):1C10480,820
(C6×Q8)⋊2C10 = C5×Q8.11D6φ: C10/C5C2 ⊆ Out C6×Q82404(C6xQ8):2C10480,821
(C6×Q8)⋊3C10 = C5×D63Q8φ: C10/C5C2 ⊆ Out C6×Q8240(C6xQ8):3C10480,825
(C6×Q8)⋊4C10 = C5×C12.23D4φ: C10/C5C2 ⊆ Out C6×Q8240(C6xQ8):4C10480,826
(C6×Q8)⋊5C10 = S3×Q8×C10φ: C10/C5C2 ⊆ Out C6×Q8240(C6xQ8):5C10480,1157
(C6×Q8)⋊6C10 = C10×Q83S3φ: C10/C5C2 ⊆ Out C6×Q8240(C6xQ8):6C10480,1158
(C6×Q8)⋊7C10 = C5×Q8.15D6φ: C10/C5C2 ⊆ Out C6×Q82404(C6xQ8):7C10480,1159
(C6×Q8)⋊8C10 = C15×C22⋊Q8φ: C10/C5C2 ⊆ Out C6×Q8240(C6xQ8):8C10480,927
(C6×Q8)⋊9C10 = C15×C4.4D4φ: C10/C5C2 ⊆ Out C6×Q8240(C6xQ8):9C10480,929
(C6×Q8)⋊10C10 = SD16×C30φ: C10/C5C2 ⊆ Out C6×Q8240(C6xQ8):10C10480,938
(C6×Q8)⋊11C10 = C15×C8.C22φ: C10/C5C2 ⊆ Out C6×Q82404(C6xQ8):11C10480,942
(C6×Q8)⋊12C10 = C15×2- 1+4φ: C10/C5C2 ⊆ Out C6×Q82404(C6xQ8):12C10480,1185
(C6×Q8)⋊13C10 = C4○D4×C30φ: trivial image240(C6xQ8):13C10480,1183

Non-split extensions G=N.Q with N=C6×Q8 and Q=C10
extensionφ:Q→Out NdρLabelID
(C6×Q8).1C10 = C5×Q82Dic3φ: C10/C5C2 ⊆ Out C6×Q8480(C6xQ8).1C10480,154
(C6×Q8).2C10 = C5×C12.10D4φ: C10/C5C2 ⊆ Out C6×Q82404(C6xQ8).2C10480,155
(C6×Q8).3C10 = C10×C3⋊Q16φ: C10/C5C2 ⊆ Out C6×Q8480(C6xQ8).3C10480,822
(C6×Q8).4C10 = C5×Dic3⋊Q8φ: C10/C5C2 ⊆ Out C6×Q8480(C6xQ8).4C10480,823
(C6×Q8).5C10 = C5×Q8×Dic3φ: C10/C5C2 ⊆ Out C6×Q8480(C6xQ8).5C10480,824
(C6×Q8).6C10 = C15×C4.10D4φ: C10/C5C2 ⊆ Out C6×Q82404(C6xQ8).6C10480,204
(C6×Q8).7C10 = C15×Q8⋊C4φ: C10/C5C2 ⊆ Out C6×Q8480(C6xQ8).7C10480,206
(C6×Q8).8C10 = C15×C4⋊Q8φ: C10/C5C2 ⊆ Out C6×Q8480(C6xQ8).8C10480,933
(C6×Q8).9C10 = Q16×C30φ: C10/C5C2 ⊆ Out C6×Q8480(C6xQ8).9C10480,939
(C6×Q8).10C10 = Q8×C60φ: trivial image480(C6xQ8).10C10480,924

׿
×
𝔽