Extensions 1→N→G→Q→1 with N=D5xC3:D4 and Q=C2

Direct product G=NxQ with N=D5xC3:D4 and Q=C2
dρLabelID
C2xD5xC3:D4120C2xD5xC3:D4480,1122

Semidirect products G=N:Q with N=D5xC3:D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5xC3:D4):1C2 = D20:25D6φ: C2/C1C2 ⊆ Out D5xC3:D41204(D5xC3:D4):1C2480,1093
(D5xC3:D4):2C2 = S3xD4xD5φ: C2/C1C2 ⊆ Out D5xC3:D4608+(D5xC3:D4):2C2480,1097
(D5xC3:D4):3C2 = D5xD4:2S3φ: C2/C1C2 ⊆ Out D5xC3:D41208-(D5xC3:D4):3C2480,1098
(D5xC3:D4):4C2 = D20:13D6φ: C2/C1C2 ⊆ Out D5xC3:D41208-(D5xC3:D4):4C2480,1101
(D5xC3:D4):5C2 = D20:14D6φ: C2/C1C2 ⊆ Out D5xC3:D41208+(D5xC3:D4):5C2480,1102
(D5xC3:D4):6C2 = C15:2+ 1+4φ: C2/C1C2 ⊆ Out D5xC3:D41204(D5xC3:D4):6C2480,1125
(D5xC3:D4):7C2 = D5xC4oD12φ: trivial image1204(D5xC3:D4):7C2480,1090

Non-split extensions G=N.Q with N=D5xC3:D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5xC3:D4).1C2 = F5xC3:D4φ: C2/C1C2 ⊆ Out D5xC3:D4608(D5xC3:D4).1C2480,1010
(D5xC3:D4).2C2 = C3:D4:F5φ: C2/C1C2 ⊆ Out D5xC3:D4608(D5xC3:D4).2C2480,1012

׿
x
:
Z
F
o
wr
Q
<