Copied to
clipboard

G = D5×C3⋊D4order 240 = 24·3·5

Direct product of D5 and C3⋊D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5×C3⋊D4, D63D10, D107D6, Dic31D10, D303C22, C30.25C23, Dic151C22, C35(D4×D5), C157(C2×D4), (C3×D5)⋊2D4, (C2×C6)⋊5D10, (C2×C10)⋊4D6, C15⋊D45C2, C157D45C2, C3⋊D205C2, C223(S3×D5), (C2×C30)⋊2C22, (D5×Dic3)⋊5C2, (C22×D5)⋊4S3, (C6×D5)⋊7C22, (S3×C10)⋊3C22, C6.25(C22×D5), C10.25(C22×S3), (C5×Dic3)⋊1C22, (D5×C2×C6)⋊3C2, (C2×S3×D5)⋊4C2, C52(C2×C3⋊D4), C2.25(C2×S3×D5), (C5×C3⋊D4)⋊3C2, SmallGroup(240,149)

Series: Derived Chief Lower central Upper central

C1C30 — D5×C3⋊D4
C1C5C15C30C6×D5C2×S3×D5 — D5×C3⋊D4
C15C30 — D5×C3⋊D4
C1C2C22

Generators and relations for D5×C3⋊D4
 G = < a,b,c,d,e | a5=b2=c3=d4=e2=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=ece=c-1, ede=d-1 >

Subgroups: 528 in 108 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C2×C4, D4, C23, D5, D5, C10, C10, Dic3, Dic3, D6, D6, C2×C6, C2×C6, C15, C2×D4, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×Dic3, C3⋊D4, C3⋊D4, C22×S3, C22×C6, C5×S3, C3×D5, C3×D5, D15, C30, C30, C4×D5, D20, C5⋊D4, C5×D4, C22×D5, C22×D5, C2×C3⋊D4, C5×Dic3, Dic15, S3×D5, C6×D5, C6×D5, S3×C10, D30, C2×C30, D4×D5, D5×Dic3, C15⋊D4, C3⋊D20, C5×C3⋊D4, C157D4, C2×S3×D5, D5×C2×C6, D5×C3⋊D4
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, C3⋊D4, C22×S3, C22×D5, C2×C3⋊D4, S3×D5, D4×D5, C2×S3×D5, D5×C3⋊D4

Smallest permutation representation of D5×C3⋊D4
On 60 points
Generators in S60
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(1 18)(2 17)(3 16)(4 20)(5 19)(6 21)(7 25)(8 24)(9 23)(10 22)(11 26)(12 30)(13 29)(14 28)(15 27)(31 46)(32 50)(33 49)(34 48)(35 47)(36 51)(37 55)(38 54)(39 53)(40 52)(41 56)(42 60)(43 59)(44 58)(45 57)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 36 41)(32 37 42)(33 38 43)(34 39 44)(35 40 45)(46 51 56)(47 52 57)(48 53 58)(49 54 59)(50 55 60)
(1 34 19 49)(2 35 20 50)(3 31 16 46)(4 32 17 47)(5 33 18 48)(6 41 21 56)(7 42 22 57)(8 43 23 58)(9 44 24 59)(10 45 25 60)(11 36 26 51)(12 37 27 52)(13 38 28 53)(14 39 29 54)(15 40 30 55)
(6 11)(7 12)(8 13)(9 14)(10 15)(21 26)(22 27)(23 28)(24 29)(25 30)(31 46)(32 47)(33 48)(34 49)(35 50)(36 56)(37 57)(38 58)(39 59)(40 60)(41 51)(42 52)(43 53)(44 54)(45 55)

G:=sub<Sym(60)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,18)(2,17)(3,16)(4,20)(5,19)(6,21)(7,25)(8,24)(9,23)(10,22)(11,26)(12,30)(13,29)(14,28)(15,27)(31,46)(32,50)(33,49)(34,48)(35,47)(36,51)(37,55)(38,54)(39,53)(40,52)(41,56)(42,60)(43,59)(44,58)(45,57), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (1,34,19,49)(2,35,20,50)(3,31,16,46)(4,32,17,47)(5,33,18,48)(6,41,21,56)(7,42,22,57)(8,43,23,58)(9,44,24,59)(10,45,25,60)(11,36,26,51)(12,37,27,52)(13,38,28,53)(14,39,29,54)(15,40,30,55), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,56)(37,57)(38,58)(39,59)(40,60)(41,51)(42,52)(43,53)(44,54)(45,55)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,18)(2,17)(3,16)(4,20)(5,19)(6,21)(7,25)(8,24)(9,23)(10,22)(11,26)(12,30)(13,29)(14,28)(15,27)(31,46)(32,50)(33,49)(34,48)(35,47)(36,51)(37,55)(38,54)(39,53)(40,52)(41,56)(42,60)(43,59)(44,58)(45,57), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (1,34,19,49)(2,35,20,50)(3,31,16,46)(4,32,17,47)(5,33,18,48)(6,41,21,56)(7,42,22,57)(8,43,23,58)(9,44,24,59)(10,45,25,60)(11,36,26,51)(12,37,27,52)(13,38,28,53)(14,39,29,54)(15,40,30,55), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,56)(37,57)(38,58)(39,59)(40,60)(41,51)(42,52)(43,53)(44,54)(45,55) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(1,18),(2,17),(3,16),(4,20),(5,19),(6,21),(7,25),(8,24),(9,23),(10,22),(11,26),(12,30),(13,29),(14,28),(15,27),(31,46),(32,50),(33,49),(34,48),(35,47),(36,51),(37,55),(38,54),(39,53),(40,52),(41,56),(42,60),(43,59),(44,58),(45,57)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,36,41),(32,37,42),(33,38,43),(34,39,44),(35,40,45),(46,51,56),(47,52,57),(48,53,58),(49,54,59),(50,55,60)], [(1,34,19,49),(2,35,20,50),(3,31,16,46),(4,32,17,47),(5,33,18,48),(6,41,21,56),(7,42,22,57),(8,43,23,58),(9,44,24,59),(10,45,25,60),(11,36,26,51),(12,37,27,52),(13,38,28,53),(14,39,29,54),(15,40,30,55)], [(6,11),(7,12),(8,13),(9,14),(10,15),(21,26),(22,27),(23,28),(24,29),(25,30),(31,46),(32,47),(33,48),(34,49),(35,50),(36,56),(37,57),(38,58),(39,59),(40,60),(41,51),(42,52),(43,53),(44,54),(45,55)]])

D5×C3⋊D4 is a maximal subgroup of
C3⋊D4⋊F5  D2025D6  S3×D4×D5  D2013D6  D2014D6  C15⋊2+ 1+4
D5×C3⋊D4 is a maximal quotient of
(C2×C20).D6  Dic151Q8  Dic3⋊C4⋊D5  D10⋊Dic6  (C6×D5).D4  Dic15⋊D4  Dic3⋊D20  D61Dic10  D30⋊Q8  D6⋊(C4×D5)  C1520(C4×D4)  D6⋊C4⋊D5  D10⋊D12  D64D20  Dic103D6  C60.8C23  D1210D10  D12.24D10  D20.9D6  C60.16C23  D20⋊D6  D20.13D6  D12.27D10  D20.14D6  C60.39C23  D20.D6  D306D4  C6.(D4×D5)  C23.17(S3×D5)  (C6×D5)⋊D4  Dic153D4  C1526(C4×D4)  (C2×C30)⋊D4  (C2×C6)⋊8D20  (S3×C10)⋊D4  (C2×C10)⋊4D12  Dic155D4  (C2×C30)⋊Q8  D308D4

36 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B5A5B6A6B6C6D6E6F6G10A10B10C10D10E10F15A15B20A20B30A···30F
order122222223445566666661010101010101515202030···30
size112556103026302222210101010224412124412124···4

36 irreducible representations

dim111111112222222224444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D5D6D6D10D10D10C3⋊D4S3×D5D4×D5C2×S3×D5D5×C3⋊D4
kernelD5×C3⋊D4D5×Dic3C15⋊D4C3⋊D20C5×C3⋊D4C157D4C2×S3×D5D5×C2×C6C22×D5C3×D5C3⋊D4D10C2×C10Dic3D6C2×C6D5C22C3C2C1
# reps111111111222122242224

Matrix representation of D5×C3⋊D4 in GL4(𝔽61) generated by

1000
0100
0001
006017
,
60000
06000
0001
0010
,
06000
16000
0010
0001
,
9900
185200
00600
00060
,
16000
06000
0010
0001
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,0,60,0,0,1,17],[60,0,0,0,0,60,0,0,0,0,0,1,0,0,1,0],[0,1,0,0,60,60,0,0,0,0,1,0,0,0,0,1],[9,18,0,0,9,52,0,0,0,0,60,0,0,0,0,60],[1,0,0,0,60,60,0,0,0,0,1,0,0,0,0,1] >;

D5×C3⋊D4 in GAP, Magma, Sage, TeX

D_5\times C_3\rtimes D_4
% in TeX

G:=Group("D5xC3:D4");
// GroupNames label

G:=SmallGroup(240,149);
// by ID

G=gap.SmallGroup(240,149);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,116,490,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^2=c^3=d^4=e^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽