Extensions 1→N→G→Q→1 with N=C5xDic12 and Q=C2

Direct product G=NxQ with N=C5xDic12 and Q=C2
dρLabelID
C10xDic12480C10xDic12480,784

Semidirect products G=N:Q with N=C5xDic12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xDic12):1C2 = Dic12:D5φ: C2/C1C2 ⊆ Out C5xDic122404+(C5xDic12):1C2480,21
(C5xDic12):2C2 = D5xDic12φ: C2/C1C2 ⊆ Out C5xDic122404-(C5xDic12):2C2480,335
(C5xDic12):3C2 = D120:C2φ: C2/C1C2 ⊆ Out C5xDic122404+(C5xDic12):3C2480,347
(C5xDic12):4C2 = C24.2D10φ: C2/C1C2 ⊆ Out C5xDic122404(C5xDic12):4C2480,337
(C5xDic12):5C2 = C40.D6φ: C2/C1C2 ⊆ Out C5xDic122404(C5xDic12):5C2480,16
(C5xDic12):6C2 = Dic10.D6φ: C2/C1C2 ⊆ Out C5xDic122404(C5xDic12):6C2480,340
(C5xDic12):7C2 = D40:5S3φ: C2/C1C2 ⊆ Out C5xDic122404(C5xDic12):7C2480,353
(C5xDic12):8C2 = D30.3D4φ: C2/C1C2 ⊆ Out C5xDic122404(C5xDic12):8C2480,354
(C5xDic12):9C2 = C5xC48:C2φ: C2/C1C2 ⊆ Out C5xDic122402(C5xDic12):9C2480,119
(C5xDic12):10C2 = C5xC8.D6φ: C2/C1C2 ⊆ Out C5xDic122404(C5xDic12):10C2480,788
(C5xDic12):11C2 = C5xD8.S3φ: C2/C1C2 ⊆ Out C5xDic122404(C5xDic12):11C2480,146
(C5xDic12):12C2 = C5xD8:3S3φ: C2/C1C2 ⊆ Out C5xDic122404(C5xDic12):12C2480,791
(C5xDic12):13C2 = C5xS3xQ16φ: C2/C1C2 ⊆ Out C5xDic122404(C5xDic12):13C2480,796
(C5xDic12):14C2 = C5xD4.D6φ: C2/C1C2 ⊆ Out C5xDic122404(C5xDic12):14C2480,794
(C5xDic12):15C2 = C5xC4oD24φ: trivial image2402(C5xDic12):15C2480,783

Non-split extensions G=N.Q with N=C5xDic12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xDic12).1C2 = C5:Dic24φ: C2/C1C2 ⊆ Out C5xDic124804-(C5xDic12).1C2480,24
(C5xDic12).2C2 = C15:Q32φ: C2/C1C2 ⊆ Out C5xDic124804(C5xDic12).2C2480,22
(C5xDic12).3C2 = C5xDic24φ: C2/C1C2 ⊆ Out C5xDic124802(C5xDic12).3C2480,120
(C5xDic12).4C2 = C5xC3:Q32φ: C2/C1C2 ⊆ Out C5xDic124804(C5xDic12).4C2480,148

׿
x
:
Z
F
o
wr
Q
<