Extensions 1→N→G→Q→1 with N=C5×Dic12 and Q=C2

Direct product G=N×Q with N=C5×Dic12 and Q=C2
dρLabelID
C10×Dic12480C10xDic12480,784

Semidirect products G=N:Q with N=C5×Dic12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×Dic12)⋊1C2 = Dic12⋊D5φ: C2/C1C2 ⊆ Out C5×Dic122404+(C5xDic12):1C2480,21
(C5×Dic12)⋊2C2 = D5×Dic12φ: C2/C1C2 ⊆ Out C5×Dic122404-(C5xDic12):2C2480,335
(C5×Dic12)⋊3C2 = D120⋊C2φ: C2/C1C2 ⊆ Out C5×Dic122404+(C5xDic12):3C2480,347
(C5×Dic12)⋊4C2 = C24.2D10φ: C2/C1C2 ⊆ Out C5×Dic122404(C5xDic12):4C2480,337
(C5×Dic12)⋊5C2 = C40.D6φ: C2/C1C2 ⊆ Out C5×Dic122404(C5xDic12):5C2480,16
(C5×Dic12)⋊6C2 = Dic10.D6φ: C2/C1C2 ⊆ Out C5×Dic122404(C5xDic12):6C2480,340
(C5×Dic12)⋊7C2 = D405S3φ: C2/C1C2 ⊆ Out C5×Dic122404(C5xDic12):7C2480,353
(C5×Dic12)⋊8C2 = D30.3D4φ: C2/C1C2 ⊆ Out C5×Dic122404(C5xDic12):8C2480,354
(C5×Dic12)⋊9C2 = C5×C48⋊C2φ: C2/C1C2 ⊆ Out C5×Dic122402(C5xDic12):9C2480,119
(C5×Dic12)⋊10C2 = C5×C8.D6φ: C2/C1C2 ⊆ Out C5×Dic122404(C5xDic12):10C2480,788
(C5×Dic12)⋊11C2 = C5×D8.S3φ: C2/C1C2 ⊆ Out C5×Dic122404(C5xDic12):11C2480,146
(C5×Dic12)⋊12C2 = C5×D83S3φ: C2/C1C2 ⊆ Out C5×Dic122404(C5xDic12):12C2480,791
(C5×Dic12)⋊13C2 = C5×S3×Q16φ: C2/C1C2 ⊆ Out C5×Dic122404(C5xDic12):13C2480,796
(C5×Dic12)⋊14C2 = C5×D4.D6φ: C2/C1C2 ⊆ Out C5×Dic122404(C5xDic12):14C2480,794
(C5×Dic12)⋊15C2 = C5×C4○D24φ: trivial image2402(C5xDic12):15C2480,783

Non-split extensions G=N.Q with N=C5×Dic12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×Dic12).1C2 = C5⋊Dic24φ: C2/C1C2 ⊆ Out C5×Dic124804-(C5xDic12).1C2480,24
(C5×Dic12).2C2 = C15⋊Q32φ: C2/C1C2 ⊆ Out C5×Dic124804(C5xDic12).2C2480,22
(C5×Dic12).3C2 = C5×Dic24φ: C2/C1C2 ⊆ Out C5×Dic124802(C5xDic12).3C2480,120
(C5×Dic12).4C2 = C5×C3⋊Q32φ: C2/C1C2 ⊆ Out C5×Dic124804(C5xDic12).4C2480,148

׿
×
𝔽