Copied to
clipboard

G = D120⋊C2order 480 = 25·3·5

12nd semidirect product of D120 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C40.19D6, D12012C2, Dic127D5, D10.7D12, C24.46D10, C120.23C22, C60.125C23, Dic5.26D12, Dic6.22D10, D60.34C22, (C8×D5)⋊3S3, (D5×C24)⋊3C2, C53(C4○D24), C153(C4○D8), C6.10(D4×D5), C8.22(S3×D5), (C4×D5).81D6, (C6×D5).45D4, C2.15(D5×D12), C30.21(C2×D4), C52C8.34D6, C31(Q8.D10), (C5×Dic12)⋊3C2, C10.10(C2×D12), C12.28D1010C2, Dic6⋊D512C2, C20.78(C22×S3), (C3×Dic5).49D4, (D5×C12).95C22, C12.148(C22×D5), (C5×Dic6).26C22, C4.73(C2×S3×D5), (C3×C52C8).38C22, SmallGroup(480,347)

Series: Derived Chief Lower central Upper central

C1C60 — D120⋊C2
C1C5C15C30C60D5×C12C12.28D10 — D120⋊C2
C15C30C60 — D120⋊C2
C1C2C4C8

Generators and relations for D120⋊C2
 G = < a,b,c | a120=b2=c2=1, bab=a-1, cac=a49, cbc=a108b >

Subgroups: 828 in 124 conjugacy classes, 40 normal (30 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C8, C2×C4, D4, Q8, D5, C10, Dic3, C12, C12, D6, C2×C6, C15, C2×C8, D8, SD16, Q16, C4○D4, Dic5, C20, C20, D10, D10, C24, C24, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C3×D5, D15, C30, C4○D8, C52C8, C40, C4×D5, C4×D5, D20, C5×Q8, C24⋊C2, D24, Dic12, C2×C24, C4○D12, C5×Dic3, C3×Dic5, C60, C6×D5, D30, C8×D5, D40, Q8⋊D5, C5×Q16, Q82D5, C4○D24, C3×C52C8, C120, D30.C2, C3⋊D20, D5×C12, C5×Dic6, D60, Q8.D10, Dic6⋊D5, D5×C24, C5×Dic12, D120, C12.28D10, D120⋊C2
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, D12, C22×S3, C4○D8, C22×D5, C2×D12, S3×D5, D4×D5, C4○D24, C2×S3×D5, Q8.D10, D5×D12, D120⋊C2

Smallest permutation representation of D120⋊C2
On 240 points
Generators in S240
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 185)(2 184)(3 183)(4 182)(5 181)(6 180)(7 179)(8 178)(9 177)(10 176)(11 175)(12 174)(13 173)(14 172)(15 171)(16 170)(17 169)(18 168)(19 167)(20 166)(21 165)(22 164)(23 163)(24 162)(25 161)(26 160)(27 159)(28 158)(29 157)(30 156)(31 155)(32 154)(33 153)(34 152)(35 151)(36 150)(37 149)(38 148)(39 147)(40 146)(41 145)(42 144)(43 143)(44 142)(45 141)(46 140)(47 139)(48 138)(49 137)(50 136)(51 135)(52 134)(53 133)(54 132)(55 131)(56 130)(57 129)(58 128)(59 127)(60 126)(61 125)(62 124)(63 123)(64 122)(65 121)(66 240)(67 239)(68 238)(69 237)(70 236)(71 235)(72 234)(73 233)(74 232)(75 231)(76 230)(77 229)(78 228)(79 227)(80 226)(81 225)(82 224)(83 223)(84 222)(85 221)(86 220)(87 219)(88 218)(89 217)(90 216)(91 215)(92 214)(93 213)(94 212)(95 211)(96 210)(97 209)(98 208)(99 207)(100 206)(101 205)(102 204)(103 203)(104 202)(105 201)(106 200)(107 199)(108 198)(109 197)(110 196)(111 195)(112 194)(113 193)(114 192)(115 191)(116 190)(117 189)(118 188)(119 187)(120 186)
(2 50)(3 99)(4 28)(5 77)(7 55)(8 104)(9 33)(10 82)(12 60)(13 109)(14 38)(15 87)(17 65)(18 114)(19 43)(20 92)(22 70)(23 119)(24 48)(25 97)(27 75)(29 53)(30 102)(32 80)(34 58)(35 107)(37 85)(39 63)(40 112)(42 90)(44 68)(45 117)(47 95)(49 73)(52 100)(54 78)(57 105)(59 83)(62 110)(64 88)(67 115)(69 93)(72 120)(74 98)(79 103)(84 108)(89 113)(94 118)(121 181)(122 230)(123 159)(124 208)(125 137)(126 186)(127 235)(128 164)(129 213)(130 142)(131 191)(132 240)(133 169)(134 218)(135 147)(136 196)(138 174)(139 223)(140 152)(141 201)(143 179)(144 228)(145 157)(146 206)(148 184)(149 233)(150 162)(151 211)(153 189)(154 238)(155 167)(156 216)(158 194)(160 172)(161 221)(163 199)(165 177)(166 226)(168 204)(170 182)(171 231)(173 209)(175 187)(176 236)(178 214)(180 192)(183 219)(185 197)(188 224)(190 202)(193 229)(195 207)(198 234)(200 212)(203 239)(205 217)(210 222)(215 227)(220 232)(225 237)

G:=sub<Sym(240)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,185)(2,184)(3,183)(4,182)(5,181)(6,180)(7,179)(8,178)(9,177)(10,176)(11,175)(12,174)(13,173)(14,172)(15,171)(16,170)(17,169)(18,168)(19,167)(20,166)(21,165)(22,164)(23,163)(24,162)(25,161)(26,160)(27,159)(28,158)(29,157)(30,156)(31,155)(32,154)(33,153)(34,152)(35,151)(36,150)(37,149)(38,148)(39,147)(40,146)(41,145)(42,144)(43,143)(44,142)(45,141)(46,140)(47,139)(48,138)(49,137)(50,136)(51,135)(52,134)(53,133)(54,132)(55,131)(56,130)(57,129)(58,128)(59,127)(60,126)(61,125)(62,124)(63,123)(64,122)(65,121)(66,240)(67,239)(68,238)(69,237)(70,236)(71,235)(72,234)(73,233)(74,232)(75,231)(76,230)(77,229)(78,228)(79,227)(80,226)(81,225)(82,224)(83,223)(84,222)(85,221)(86,220)(87,219)(88,218)(89,217)(90,216)(91,215)(92,214)(93,213)(94,212)(95,211)(96,210)(97,209)(98,208)(99,207)(100,206)(101,205)(102,204)(103,203)(104,202)(105,201)(106,200)(107,199)(108,198)(109,197)(110,196)(111,195)(112,194)(113,193)(114,192)(115,191)(116,190)(117,189)(118,188)(119,187)(120,186), (2,50)(3,99)(4,28)(5,77)(7,55)(8,104)(9,33)(10,82)(12,60)(13,109)(14,38)(15,87)(17,65)(18,114)(19,43)(20,92)(22,70)(23,119)(24,48)(25,97)(27,75)(29,53)(30,102)(32,80)(34,58)(35,107)(37,85)(39,63)(40,112)(42,90)(44,68)(45,117)(47,95)(49,73)(52,100)(54,78)(57,105)(59,83)(62,110)(64,88)(67,115)(69,93)(72,120)(74,98)(79,103)(84,108)(89,113)(94,118)(121,181)(122,230)(123,159)(124,208)(125,137)(126,186)(127,235)(128,164)(129,213)(130,142)(131,191)(132,240)(133,169)(134,218)(135,147)(136,196)(138,174)(139,223)(140,152)(141,201)(143,179)(144,228)(145,157)(146,206)(148,184)(149,233)(150,162)(151,211)(153,189)(154,238)(155,167)(156,216)(158,194)(160,172)(161,221)(163,199)(165,177)(166,226)(168,204)(170,182)(171,231)(173,209)(175,187)(176,236)(178,214)(180,192)(183,219)(185,197)(188,224)(190,202)(193,229)(195,207)(198,234)(200,212)(203,239)(205,217)(210,222)(215,227)(220,232)(225,237)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,185)(2,184)(3,183)(4,182)(5,181)(6,180)(7,179)(8,178)(9,177)(10,176)(11,175)(12,174)(13,173)(14,172)(15,171)(16,170)(17,169)(18,168)(19,167)(20,166)(21,165)(22,164)(23,163)(24,162)(25,161)(26,160)(27,159)(28,158)(29,157)(30,156)(31,155)(32,154)(33,153)(34,152)(35,151)(36,150)(37,149)(38,148)(39,147)(40,146)(41,145)(42,144)(43,143)(44,142)(45,141)(46,140)(47,139)(48,138)(49,137)(50,136)(51,135)(52,134)(53,133)(54,132)(55,131)(56,130)(57,129)(58,128)(59,127)(60,126)(61,125)(62,124)(63,123)(64,122)(65,121)(66,240)(67,239)(68,238)(69,237)(70,236)(71,235)(72,234)(73,233)(74,232)(75,231)(76,230)(77,229)(78,228)(79,227)(80,226)(81,225)(82,224)(83,223)(84,222)(85,221)(86,220)(87,219)(88,218)(89,217)(90,216)(91,215)(92,214)(93,213)(94,212)(95,211)(96,210)(97,209)(98,208)(99,207)(100,206)(101,205)(102,204)(103,203)(104,202)(105,201)(106,200)(107,199)(108,198)(109,197)(110,196)(111,195)(112,194)(113,193)(114,192)(115,191)(116,190)(117,189)(118,188)(119,187)(120,186), (2,50)(3,99)(4,28)(5,77)(7,55)(8,104)(9,33)(10,82)(12,60)(13,109)(14,38)(15,87)(17,65)(18,114)(19,43)(20,92)(22,70)(23,119)(24,48)(25,97)(27,75)(29,53)(30,102)(32,80)(34,58)(35,107)(37,85)(39,63)(40,112)(42,90)(44,68)(45,117)(47,95)(49,73)(52,100)(54,78)(57,105)(59,83)(62,110)(64,88)(67,115)(69,93)(72,120)(74,98)(79,103)(84,108)(89,113)(94,118)(121,181)(122,230)(123,159)(124,208)(125,137)(126,186)(127,235)(128,164)(129,213)(130,142)(131,191)(132,240)(133,169)(134,218)(135,147)(136,196)(138,174)(139,223)(140,152)(141,201)(143,179)(144,228)(145,157)(146,206)(148,184)(149,233)(150,162)(151,211)(153,189)(154,238)(155,167)(156,216)(158,194)(160,172)(161,221)(163,199)(165,177)(166,226)(168,204)(170,182)(171,231)(173,209)(175,187)(176,236)(178,214)(180,192)(183,219)(185,197)(188,224)(190,202)(193,229)(195,207)(198,234)(200,212)(203,239)(205,217)(210,222)(215,227)(220,232)(225,237) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,185),(2,184),(3,183),(4,182),(5,181),(6,180),(7,179),(8,178),(9,177),(10,176),(11,175),(12,174),(13,173),(14,172),(15,171),(16,170),(17,169),(18,168),(19,167),(20,166),(21,165),(22,164),(23,163),(24,162),(25,161),(26,160),(27,159),(28,158),(29,157),(30,156),(31,155),(32,154),(33,153),(34,152),(35,151),(36,150),(37,149),(38,148),(39,147),(40,146),(41,145),(42,144),(43,143),(44,142),(45,141),(46,140),(47,139),(48,138),(49,137),(50,136),(51,135),(52,134),(53,133),(54,132),(55,131),(56,130),(57,129),(58,128),(59,127),(60,126),(61,125),(62,124),(63,123),(64,122),(65,121),(66,240),(67,239),(68,238),(69,237),(70,236),(71,235),(72,234),(73,233),(74,232),(75,231),(76,230),(77,229),(78,228),(79,227),(80,226),(81,225),(82,224),(83,223),(84,222),(85,221),(86,220),(87,219),(88,218),(89,217),(90,216),(91,215),(92,214),(93,213),(94,212),(95,211),(96,210),(97,209),(98,208),(99,207),(100,206),(101,205),(102,204),(103,203),(104,202),(105,201),(106,200),(107,199),(108,198),(109,197),(110,196),(111,195),(112,194),(113,193),(114,192),(115,191),(116,190),(117,189),(118,188),(119,187),(120,186)], [(2,50),(3,99),(4,28),(5,77),(7,55),(8,104),(9,33),(10,82),(12,60),(13,109),(14,38),(15,87),(17,65),(18,114),(19,43),(20,92),(22,70),(23,119),(24,48),(25,97),(27,75),(29,53),(30,102),(32,80),(34,58),(35,107),(37,85),(39,63),(40,112),(42,90),(44,68),(45,117),(47,95),(49,73),(52,100),(54,78),(57,105),(59,83),(62,110),(64,88),(67,115),(69,93),(72,120),(74,98),(79,103),(84,108),(89,113),(94,118),(121,181),(122,230),(123,159),(124,208),(125,137),(126,186),(127,235),(128,164),(129,213),(130,142),(131,191),(132,240),(133,169),(134,218),(135,147),(136,196),(138,174),(139,223),(140,152),(141,201),(143,179),(144,228),(145,157),(146,206),(148,184),(149,233),(150,162),(151,211),(153,189),(154,238),(155,167),(156,216),(158,194),(160,172),(161,221),(163,199),(165,177),(166,226),(168,204),(170,182),(171,231),(173,209),(175,187),(176,236),(178,214),(180,192),(183,219),(185,197),(188,224),(190,202),(193,229),(195,207),(198,234),(200,212),(203,239),(205,217),(210,222),(215,227),(220,232),(225,237)]])

60 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E5A5B6A6B6C8A8B8C8D10A10B12A12B12C12D15A15B20A20B20C20D20E20F24A24B24C24D24E24F24G24H30A30B40A40B40C40D60A60B60C60D120A···120H
order122223444445566688881010121212121515202020202020242424242424242430304040404060606060120···120
size111060602255121222210102210102222101044442424242422221010101044444444444···4

60 irreducible representations

dim1111112222222222222444444
type+++++++++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D5D6D6D6D10D10D12D12C4○D8C4○D24S3×D5D4×D5C2×S3×D5Q8.D10D5×D12D120⋊C2
kernelD120⋊C2Dic6⋊D5D5×C24C5×Dic12D120C12.28D10C8×D5C3×Dic5C6×D5Dic12C52C8C40C4×D5C24Dic6Dic5D10C15C5C8C6C4C3C2C1
# reps1211121112111242248222448

Matrix representation of D120⋊C2 in GL4(𝔽241) generated by

128000
2320900
0001
0024051
,
15017200
1209100
000240
002400
,
1000
17224000
0010
0051240
G:=sub<GL(4,GF(241))| [128,23,0,0,0,209,0,0,0,0,0,240,0,0,1,51],[150,120,0,0,172,91,0,0,0,0,0,240,0,0,240,0],[1,172,0,0,0,240,0,0,0,0,1,51,0,0,0,240] >;

D120⋊C2 in GAP, Magma, Sage, TeX

D_{120}\rtimes C_2
% in TeX

G:=Group("D120:C2");
// GroupNames label

G:=SmallGroup(480,347);
// by ID

G=gap.SmallGroup(480,347);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,253,120,135,142,346,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c|a^120=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^49,c*b*c=a^108*b>;
// generators/relations

׿
×
𝔽