Extensions 1→N→G→Q→1 with N=Dic3xC20 and Q=C2

Direct product G=NxQ with N=Dic3xC20 and Q=C2
dρLabelID
Dic3xC2xC20480Dic3xC2xC20480,801

Semidirect products G=N:Q with N=Dic3xC20 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3xC20):1C2 = C60.97D4φ: C2/C1C2 ⊆ Out Dic3xC201204(Dic3xC20):1C2480,53
(Dic3xC20):2C2 = D60:13C4φ: C2/C1C2 ⊆ Out Dic3xC201204(Dic3xC20):2C2480,56
(Dic3xC20):3C2 = C60.44D4φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):3C2480,440
(Dic3xC20):4C2 = C60.47D4φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):4C2480,450
(Dic3xC20):5C2 = Dic3xD20φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):5C2480,501
(Dic3xC20):6C2 = D60:14C4φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):6C2480,504
(Dic3xC20):7C2 = C12:D20φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):7C2480,534
(Dic3xC20):8C2 = (D5xC12):C4φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):8C2480,433
(Dic3xC20):9C2 = (C4xD15):10C4φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):9C2480,462
(Dic3xC20):10C2 = C4xD5xDic3φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):10C2480,467
(Dic3xC20):11C2 = C4xD30.C2φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):11C2480,477
(Dic3xC20):12C2 = C4xC3:D20φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):12C2480,519
(Dic3xC20):13C2 = C5xD12:C4φ: C2/C1C2 ⊆ Out Dic3xC201204(Dic3xC20):13C2480,144
(Dic3xC20):14C2 = C5xQ8:3Dic3φ: C2/C1C2 ⊆ Out Dic3xC201204(Dic3xC20):14C2480,156
(Dic3xC20):15C2 = C5xDic3:5D4φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):15C2480,772
(Dic3xC20):16C2 = C5xD4xDic3φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):16C2480,813
(Dic3xC20):17C2 = C5xC23.12D6φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):17C2480,815
(Dic3xC20):18C2 = C5xC12:3D4φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):18C2480,819
(Dic3xC20):19C2 = C5xC12.23D4φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):19C2480,826
(Dic3xC20):20C2 = Dic3.D20φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):20C2480,429
(Dic3xC20):21C2 = (C4xDic3):D5φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):21C2480,439
(Dic3xC20):22C2 = C10.D4:S3φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):22C2480,456
(Dic3xC20):23C2 = (D5xDic3):C4φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):23C2480,469
(Dic3xC20):24C2 = Dic3:4D20φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):24C2480,471
(Dic3xC20):25C2 = D30.23(C2xC4)φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):25C2480,479
(Dic3xC20):26C2 = C5xC42:2S3φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):26C2480,751
(Dic3xC20):27C2 = C5xC23.16D6φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):27C2480,756
(Dic3xC20):28C2 = C5xC23.8D6φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):28C2480,758
(Dic3xC20):29C2 = C5xDic3:4D4φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):29C2480,760
(Dic3xC20):30C2 = C5xC23.11D6φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):30C2480,764
(Dic3xC20):31C2 = C5xC4:C4:7S3φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):31C2480,771
(Dic3xC20):32C2 = C5xC4:C4:S3φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):32C2480,777
(Dic3xC20):33C2 = C5xC23.26D6φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):33C2480,805
(Dic3xC20):34C2 = C20xC3:D4φ: C2/C1C2 ⊆ Out Dic3xC20240(Dic3xC20):34C2480,807
(Dic3xC20):35C2 = S3xC4xC20φ: trivial image240(Dic3xC20):35C2480,750

Non-split extensions G=N.Q with N=Dic3xC20 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3xC20).1C2 = Dic3xDic10φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).1C2480,406
(Dic3xC20).2C2 = Dic30:14C4φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).2C2480,416
(Dic3xC20).3C2 = C60.6Q8φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).3C2480,457
(Dic3xC20).4C2 = C60.48D4φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).4C2480,465
(Dic3xC20).5C2 = C20:4Dic6φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).5C2480,545
(Dic3xC20).6C2 = Dic3xC5:2C8φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).6C2480,26
(Dic3xC20).7C2 = C30.22C42φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).7C2480,29
(Dic3xC20).8C2 = C60.15Q8φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).8C2480,60
(Dic3xC20).9C2 = C4xC15:Q8φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).9C2480,543
(Dic3xC20).10C2 = C5xDic6:C4φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).10C2480,766
(Dic3xC20).11C2 = C5xC12:Q8φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).11C2480,767
(Dic3xC20).12C2 = C5xC4.Dic6φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).12C2480,769
(Dic3xC20).13C2 = C5xDic3:Q8φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).13C2480,823
(Dic3xC20).14C2 = C5xQ8xDic3φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).14C2480,824
(Dic3xC20).15C2 = C5xDic3:C8φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).15C2480,133
(Dic3xC20).16C2 = C5xC24:C4φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).16C2480,134
(Dic3xC20).17C2 = Dic3:5Dic10φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).17C2480,400
(Dic3xC20).18C2 = Dic3.3Dic10φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).18C2480,455
(Dic3xC20).19C2 = C20xDic6φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).19C2480,747
(Dic3xC20).20C2 = C5xDic3.Q8φ: C2/C1C2 ⊆ Out Dic3xC20480(Dic3xC20).20C2480,768
(Dic3xC20).21C2 = Dic3xC40φ: trivial image480(Dic3xC20).21C2480,132

׿
x
:
Z
F
o
wr
Q
<