Copied to
clipboard

G = C5×D12⋊C4order 480 = 25·3·5

Direct product of C5 and D12⋊C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C5×D12⋊C4, D124C20, Dic64C20, C60.239D4, C1520C4≀C2, C4.3(S3×C20), (C5×D12)⋊16C4, C20.78(C4×S3), C12.6(C2×C20), (C2×C30).88D4, C12.54(C5×D4), C60.176(C2×C4), C4○D12.2C10, (C5×Dic6)⋊16C4, (C4×Dic3)⋊1C10, (C2×C20).349D6, (C2×C10).25D12, M4(2)⋊4(C5×S3), (C5×M4(2))⋊8S3, C22.3(C5×D12), C10.57(D6⋊C4), (Dic3×C20)⋊13C2, (C3×M4(2))⋊8C10, C20.122(C3⋊D4), C30.99(C22⋊C4), (C15×M4(2))⋊18C2, (C2×C60).344C22, C32(C5×C4≀C2), (C2×C6).1(C5×D4), C2.11(C5×D6⋊C4), C4.29(C5×C3⋊D4), (C2×C4).37(S3×C10), (C5×C4○D12).8C2, C6.10(C5×C22⋊C4), (C2×C12).14(C2×C10), SmallGroup(480,144)

Series: Derived Chief Lower central Upper central

C1C12 — C5×D12⋊C4
C1C3C6C12C2×C12C2×C60C5×C4○D12 — C5×D12⋊C4
C3C6C12 — C5×D12⋊C4
C1C20C2×C20C5×M4(2)

Generators and relations for C5×D12⋊C4
 G = < a,b,c,d | a5=b12=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b5, dcd-1=b7c >

Subgroups: 228 in 88 conjugacy classes, 38 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C10, C10, Dic3, C12, D6, C2×C6, C15, C42, M4(2), C4○D4, C20, C20, C2×C10, C2×C10, C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C5×S3, C30, C30, C4≀C2, C40, C2×C20, C2×C20, C5×D4, C5×Q8, C4×Dic3, C3×M4(2), C4○D12, C5×Dic3, C60, S3×C10, C2×C30, C4×C20, C5×M4(2), C5×C4○D4, D12⋊C4, C120, C5×Dic6, S3×C20, C5×D12, C10×Dic3, C5×C3⋊D4, C2×C60, C5×C4≀C2, Dic3×C20, C15×M4(2), C5×C4○D12, C5×D12⋊C4
Quotients: C1, C2, C4, C22, C5, S3, C2×C4, D4, C10, D6, C22⋊C4, C20, C2×C10, C4×S3, D12, C3⋊D4, C5×S3, C4≀C2, C2×C20, C5×D4, D6⋊C4, S3×C10, C5×C22⋊C4, D12⋊C4, S3×C20, C5×D12, C5×C3⋊D4, C5×C4≀C2, C5×D6⋊C4, C5×D12⋊C4

Smallest permutation representation of C5×D12⋊C4
On 120 points
Generators in S120
(1 51 47 25 20)(2 52 48 26 21)(3 53 37 27 22)(4 54 38 28 23)(5 55 39 29 24)(6 56 40 30 13)(7 57 41 31 14)(8 58 42 32 15)(9 59 43 33 16)(10 60 44 34 17)(11 49 45 35 18)(12 50 46 36 19)(61 110 103 96 81)(62 111 104 85 82)(63 112 105 86 83)(64 113 106 87 84)(65 114 107 88 73)(66 115 108 89 74)(67 116 97 90 75)(68 117 98 91 76)(69 118 99 92 77)(70 119 100 93 78)(71 120 101 94 79)(72 109 102 95 80)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 68)(2 67)(3 66)(4 65)(5 64)(6 63)(7 62)(8 61)(9 72)(10 71)(11 70)(12 69)(13 83)(14 82)(15 81)(16 80)(17 79)(18 78)(19 77)(20 76)(21 75)(22 74)(23 73)(24 84)(25 91)(26 90)(27 89)(28 88)(29 87)(30 86)(31 85)(32 96)(33 95)(34 94)(35 93)(36 92)(37 108)(38 107)(39 106)(40 105)(41 104)(42 103)(43 102)(44 101)(45 100)(46 99)(47 98)(48 97)(49 119)(50 118)(51 117)(52 116)(53 115)(54 114)(55 113)(56 112)(57 111)(58 110)(59 109)(60 120)
(1 4 7 10)(2 9 8 3)(5 12 11 6)(13 24 19 18)(14 17 20 23)(15 22 21 16)(25 28 31 34)(26 33 32 27)(29 36 35 30)(37 48 43 42)(38 41 44 47)(39 46 45 40)(49 56 55 50)(51 54 57 60)(52 59 58 53)(61 65)(62 70)(64 68)(67 71)(73 81)(75 79)(76 84)(78 82)(85 93)(87 91)(88 96)(90 94)(97 101)(98 106)(100 104)(103 107)(110 114)(111 119)(113 117)(116 120)

G:=sub<Sym(120)| (1,51,47,25,20)(2,52,48,26,21)(3,53,37,27,22)(4,54,38,28,23)(5,55,39,29,24)(6,56,40,30,13)(7,57,41,31,14)(8,58,42,32,15)(9,59,43,33,16)(10,60,44,34,17)(11,49,45,35,18)(12,50,46,36,19)(61,110,103,96,81)(62,111,104,85,82)(63,112,105,86,83)(64,113,106,87,84)(65,114,107,88,73)(66,115,108,89,74)(67,116,97,90,75)(68,117,98,91,76)(69,118,99,92,77)(70,119,100,93,78)(71,120,101,94,79)(72,109,102,95,80), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,68)(2,67)(3,66)(4,65)(5,64)(6,63)(7,62)(8,61)(9,72)(10,71)(11,70)(12,69)(13,83)(14,82)(15,81)(16,80)(17,79)(18,78)(19,77)(20,76)(21,75)(22,74)(23,73)(24,84)(25,91)(26,90)(27,89)(28,88)(29,87)(30,86)(31,85)(32,96)(33,95)(34,94)(35,93)(36,92)(37,108)(38,107)(39,106)(40,105)(41,104)(42,103)(43,102)(44,101)(45,100)(46,99)(47,98)(48,97)(49,119)(50,118)(51,117)(52,116)(53,115)(54,114)(55,113)(56,112)(57,111)(58,110)(59,109)(60,120), (1,4,7,10)(2,9,8,3)(5,12,11,6)(13,24,19,18)(14,17,20,23)(15,22,21,16)(25,28,31,34)(26,33,32,27)(29,36,35,30)(37,48,43,42)(38,41,44,47)(39,46,45,40)(49,56,55,50)(51,54,57,60)(52,59,58,53)(61,65)(62,70)(64,68)(67,71)(73,81)(75,79)(76,84)(78,82)(85,93)(87,91)(88,96)(90,94)(97,101)(98,106)(100,104)(103,107)(110,114)(111,119)(113,117)(116,120)>;

G:=Group( (1,51,47,25,20)(2,52,48,26,21)(3,53,37,27,22)(4,54,38,28,23)(5,55,39,29,24)(6,56,40,30,13)(7,57,41,31,14)(8,58,42,32,15)(9,59,43,33,16)(10,60,44,34,17)(11,49,45,35,18)(12,50,46,36,19)(61,110,103,96,81)(62,111,104,85,82)(63,112,105,86,83)(64,113,106,87,84)(65,114,107,88,73)(66,115,108,89,74)(67,116,97,90,75)(68,117,98,91,76)(69,118,99,92,77)(70,119,100,93,78)(71,120,101,94,79)(72,109,102,95,80), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,68)(2,67)(3,66)(4,65)(5,64)(6,63)(7,62)(8,61)(9,72)(10,71)(11,70)(12,69)(13,83)(14,82)(15,81)(16,80)(17,79)(18,78)(19,77)(20,76)(21,75)(22,74)(23,73)(24,84)(25,91)(26,90)(27,89)(28,88)(29,87)(30,86)(31,85)(32,96)(33,95)(34,94)(35,93)(36,92)(37,108)(38,107)(39,106)(40,105)(41,104)(42,103)(43,102)(44,101)(45,100)(46,99)(47,98)(48,97)(49,119)(50,118)(51,117)(52,116)(53,115)(54,114)(55,113)(56,112)(57,111)(58,110)(59,109)(60,120), (1,4,7,10)(2,9,8,3)(5,12,11,6)(13,24,19,18)(14,17,20,23)(15,22,21,16)(25,28,31,34)(26,33,32,27)(29,36,35,30)(37,48,43,42)(38,41,44,47)(39,46,45,40)(49,56,55,50)(51,54,57,60)(52,59,58,53)(61,65)(62,70)(64,68)(67,71)(73,81)(75,79)(76,84)(78,82)(85,93)(87,91)(88,96)(90,94)(97,101)(98,106)(100,104)(103,107)(110,114)(111,119)(113,117)(116,120) );

G=PermutationGroup([[(1,51,47,25,20),(2,52,48,26,21),(3,53,37,27,22),(4,54,38,28,23),(5,55,39,29,24),(6,56,40,30,13),(7,57,41,31,14),(8,58,42,32,15),(9,59,43,33,16),(10,60,44,34,17),(11,49,45,35,18),(12,50,46,36,19),(61,110,103,96,81),(62,111,104,85,82),(63,112,105,86,83),(64,113,106,87,84),(65,114,107,88,73),(66,115,108,89,74),(67,116,97,90,75),(68,117,98,91,76),(69,118,99,92,77),(70,119,100,93,78),(71,120,101,94,79),(72,109,102,95,80)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,68),(2,67),(3,66),(4,65),(5,64),(6,63),(7,62),(8,61),(9,72),(10,71),(11,70),(12,69),(13,83),(14,82),(15,81),(16,80),(17,79),(18,78),(19,77),(20,76),(21,75),(22,74),(23,73),(24,84),(25,91),(26,90),(27,89),(28,88),(29,87),(30,86),(31,85),(32,96),(33,95),(34,94),(35,93),(36,92),(37,108),(38,107),(39,106),(40,105),(41,104),(42,103),(43,102),(44,101),(45,100),(46,99),(47,98),(48,97),(49,119),(50,118),(51,117),(52,116),(53,115),(54,114),(55,113),(56,112),(57,111),(58,110),(59,109),(60,120)], [(1,4,7,10),(2,9,8,3),(5,12,11,6),(13,24,19,18),(14,17,20,23),(15,22,21,16),(25,28,31,34),(26,33,32,27),(29,36,35,30),(37,48,43,42),(38,41,44,47),(39,46,45,40),(49,56,55,50),(51,54,57,60),(52,59,58,53),(61,65),(62,70),(64,68),(67,71),(73,81),(75,79),(76,84),(78,82),(85,93),(87,91),(88,96),(90,94),(97,101),(98,106),(100,104),(103,107),(110,114),(111,119),(113,117),(116,120)]])

120 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F4G4H5A5B5C5D6A6B8A8B10A10B10C10D10E10F10G10H10I10J10K10L12A12B12C15A15B15C15D20A···20H20I20J20K20L20M···20AB20AC20AD20AE20AF24A24B24C24D30A30B30C30D30E30F30G30H40A···40H60A···60H60I60J60K60L120A···120P
order1222344444444555566881010101010101010101010101212121515151520···202020202020···202020202024242424303030303030303040···4060···6060606060120···120
size11212211266661211112444111122221212121222422221···122226···6121212124444222244444···42···244444···4

120 irreducible representations

dim111111111111222222222222222244
type+++++++++
imageC1C2C2C2C4C4C5C10C10C10C20C20S3D4D4D6C4×S3C3⋊D4D12C5×S3C4≀C2C5×D4C5×D4S3×C10S3×C20C5×C3⋊D4C5×D12C5×C4≀C2D12⋊C4C5×D12⋊C4
kernelC5×D12⋊C4Dic3×C20C15×M4(2)C5×C4○D12C5×Dic6C5×D12D12⋊C4C4×Dic3C3×M4(2)C4○D12Dic6D12C5×M4(2)C60C2×C30C2×C20C20C20C2×C10M4(2)C15C12C2×C6C2×C4C4C4C22C3C5C1
# reps1111224444881111222444448881628

Matrix representation of C5×D12⋊C4 in GL4(𝔽241) generated by

91000
09100
002050
000205
,
024000
1100
00640
000177
,
4314200
9919800
0001
0010
,
240000
1100
001770
0001
G:=sub<GL(4,GF(241))| [91,0,0,0,0,91,0,0,0,0,205,0,0,0,0,205],[0,1,0,0,240,1,0,0,0,0,64,0,0,0,0,177],[43,99,0,0,142,198,0,0,0,0,0,1,0,0,1,0],[240,1,0,0,0,1,0,0,0,0,177,0,0,0,0,1] >;

C5×D12⋊C4 in GAP, Magma, Sage, TeX

C_5\times D_{12}\rtimes C_4
% in TeX

G:=Group("C5xD12:C4");
// GroupNames label

G:=SmallGroup(480,144);
// by ID

G=gap.SmallGroup(480,144);
# by ID

G:=PCGroup([7,-2,-2,-5,-2,-2,-2,-3,589,148,136,4204,2111,102,15686]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^12=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^5,d*c*d^-1=b^7*c>;
// generators/relations

׿
×
𝔽