Extensions 1→N→G→Q→1 with N=C5×Dic3⋊C4 and Q=C2

Direct product G=N×Q with N=C5×Dic3⋊C4 and Q=C2
dρLabelID
C10×Dic3⋊C4480C10xDic3:C4480,802

Semidirect products G=N:Q with N=C5×Dic3⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×Dic3⋊C4)⋊1C2 = C5×C423S3φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):1C2480,755
(C5×Dic3⋊C4)⋊2C2 = C5×C12.48D4φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):2C2480,803
(C5×Dic3⋊C4)⋊3C2 = C5×C23.28D6φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):3C2480,808
(C5×Dic3⋊C4)⋊4C2 = (C2×C60).C22φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):4C2480,438
(C5×Dic3⋊C4)⋊5C2 = D102Dic6φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):5C2480,498
(C5×Dic3⋊C4)⋊6C2 = D104Dic6φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):6C2480,507
(C5×Dic3⋊C4)⋊7C2 = D30.6D4φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):7C2480,509
(C5×Dic3⋊C4)⋊8C2 = D302D4φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):8C2480,535
(C5×Dic3⋊C4)⋊9C2 = D30.34D4φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):9C2480,430
(C5×Dic3⋊C4)⋊10C2 = (C4×Dic15)⋊C2φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):10C2480,442
(C5×Dic3⋊C4)⋊11C2 = D308Q8φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):11C2480,453
(C5×Dic3⋊C4)⋊12C2 = D10.19(C4×S3)φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):12C2480,470
(C5×Dic3⋊C4)⋊13C2 = Dic1513D4φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):13C2480,472
(C5×Dic3⋊C4)⋊14C2 = D30.Q8φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):14C2480,480
(C5×Dic3⋊C4)⋊15C2 = C4⋊Dic5⋊S3φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):15C2480,421
(C5×Dic3⋊C4)⋊16C2 = (C6×D5).D4φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):16C2480,483
(C5×Dic3⋊C4)⋊17C2 = Dic3⋊D20φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):17C2480,485
(C5×Dic3⋊C4)⋊18C2 = D30⋊Q8φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):18C2480,487
(C5×Dic3⋊C4)⋊19C2 = D304Q8φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):19C2480,505
(C5×Dic3⋊C4)⋊20C2 = C5×Dic3.D4φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):20C2480,757
(C5×Dic3⋊C4)⋊21C2 = C5×Dic3⋊D4φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):21C2480,763
(C5×Dic3⋊C4)⋊22C2 = C5×D6.D4φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):22C2480,773
(C5×Dic3⋊C4)⋊23C2 = Dic3⋊C4⋊D5φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):23C2480,424
(C5×Dic3⋊C4)⋊24C2 = D10⋊Dic6φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):24C2480,425
(C5×Dic3⋊C4)⋊25C2 = (C4×Dic5)⋊S3φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):25C2480,463
(C5×Dic3⋊C4)⋊26C2 = D5×Dic3⋊C4φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):26C2480,468
(C5×Dic3⋊C4)⋊27C2 = D30.C2⋊C4φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):27C2480,478
(C5×Dic3⋊C4)⋊28C2 = C1520(C4×D4)φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):28C2480,520
(C5×Dic3⋊C4)⋊29C2 = C5×C23.16D6φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):29C2480,756
(C5×Dic3⋊C4)⋊30C2 = C5×C23.8D6φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):30C2480,758
(C5×Dic3⋊C4)⋊31C2 = C5×Dic34D4φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):31C2480,760
(C5×Dic3⋊C4)⋊32C2 = C5×C23.9D6φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):32C2480,762
(C5×Dic3⋊C4)⋊33C2 = C5×S3×C4⋊C4φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):33C2480,770
(C5×Dic3⋊C4)⋊34C2 = C5×D6⋊Q8φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):34C2480,775
(C5×Dic3⋊C4)⋊35C2 = C5×C4⋊C4⋊S3φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):35C2480,777
(C5×Dic3⋊C4)⋊36C2 = C5×C23.23D6φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):36C2480,814
(C5×Dic3⋊C4)⋊37C2 = C5×C23.14D6φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):37C2480,818
(C5×Dic3⋊C4)⋊38C2 = C5×D63Q8φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4240(C5xDic3:C4):38C2480,825
(C5×Dic3⋊C4)⋊39C2 = C5×C422S3φ: trivial image240(C5xDic3:C4):39C2480,751
(C5×Dic3⋊C4)⋊40C2 = C20×C3⋊D4φ: trivial image240(C5xDic3:C4):40C2480,807

Non-split extensions G=N.Q with N=C5×Dic3⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×Dic3⋊C4).1C2 = C5×C12.6Q8φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4480(C5xDic3:C4).1C2480,749
(C5×Dic3⋊C4).2C2 = Dic3⋊Dic10φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4480(C5xDic3:C4).2C2480,404
(C5×Dic3⋊C4).3C2 = Dic5.1Dic6φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4480(C5xDic3:C4).3C2480,410
(C5×Dic3⋊C4).4C2 = Dic3.Dic10φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4480(C5xDic3:C4).4C2480,419
(C5×Dic3⋊C4).5C2 = Dic155Q8φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4480(C5xDic3:C4).5C2480,401
(C5×Dic3⋊C4).6C2 = Dic15.4Q8φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4480(C5xDic3:C4).6C2480,458
(C5×Dic3⋊C4).7C2 = Dic151Q8φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4480(C5xDic3:C4).7C2480,403
(C5×Dic3⋊C4).8C2 = Dic15.2Q8φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4480(C5xDic3:C4).8C2480,415
(C5×Dic3⋊C4).9C2 = Dic3.2Dic10φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4480(C5xDic3:C4).9C2480,422
(C5×Dic3⋊C4).10C2 = C5×C12⋊Q8φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4480(C5xDic3:C4).10C2480,767
(C5×Dic3⋊C4).11C2 = C5×C4.Dic6φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4480(C5xDic3:C4).11C2480,769
(C5×Dic3⋊C4).12C2 = Dic55Dic6φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4480(C5xDic3:C4).12C2480,399
(C5×Dic3⋊C4).13C2 = Dic5.7Dic6φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4480(C5xDic3:C4).13C2480,454
(C5×Dic3⋊C4).14C2 = C5×Dic6⋊C4φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4480(C5xDic3:C4).14C2480,766
(C5×Dic3⋊C4).15C2 = C5×Dic3.Q8φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4480(C5xDic3:C4).15C2480,768
(C5×Dic3⋊C4).16C2 = C5×Dic3⋊Q8φ: C2/C1C2 ⊆ Out C5×Dic3⋊C4480(C5xDic3:C4).16C2480,823
(C5×Dic3⋊C4).17C2 = C20×Dic6φ: trivial image480(C5xDic3:C4).17C2480,747

׿
×
𝔽