extension | φ:Q→Out N | d | ρ | Label | ID |
(C5×Dic3⋊C4)⋊1C2 = C5×C42⋊3S3 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):1C2 | 480,755 |
(C5×Dic3⋊C4)⋊2C2 = C5×C12.48D4 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):2C2 | 480,803 |
(C5×Dic3⋊C4)⋊3C2 = C5×C23.28D6 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):3C2 | 480,808 |
(C5×Dic3⋊C4)⋊4C2 = (C2×C60).C22 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):4C2 | 480,438 |
(C5×Dic3⋊C4)⋊5C2 = D10⋊2Dic6 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):5C2 | 480,498 |
(C5×Dic3⋊C4)⋊6C2 = D10⋊4Dic6 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):6C2 | 480,507 |
(C5×Dic3⋊C4)⋊7C2 = D30.6D4 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):7C2 | 480,509 |
(C5×Dic3⋊C4)⋊8C2 = D30⋊2D4 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):8C2 | 480,535 |
(C5×Dic3⋊C4)⋊9C2 = D30.34D4 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):9C2 | 480,430 |
(C5×Dic3⋊C4)⋊10C2 = (C4×Dic15)⋊C2 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):10C2 | 480,442 |
(C5×Dic3⋊C4)⋊11C2 = D30⋊8Q8 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):11C2 | 480,453 |
(C5×Dic3⋊C4)⋊12C2 = D10.19(C4×S3) | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):12C2 | 480,470 |
(C5×Dic3⋊C4)⋊13C2 = Dic15⋊13D4 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):13C2 | 480,472 |
(C5×Dic3⋊C4)⋊14C2 = D30.Q8 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):14C2 | 480,480 |
(C5×Dic3⋊C4)⋊15C2 = C4⋊Dic5⋊S3 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):15C2 | 480,421 |
(C5×Dic3⋊C4)⋊16C2 = (C6×D5).D4 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):16C2 | 480,483 |
(C5×Dic3⋊C4)⋊17C2 = Dic3⋊D20 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):17C2 | 480,485 |
(C5×Dic3⋊C4)⋊18C2 = D30⋊Q8 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):18C2 | 480,487 |
(C5×Dic3⋊C4)⋊19C2 = D30⋊4Q8 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):19C2 | 480,505 |
(C5×Dic3⋊C4)⋊20C2 = C5×Dic3.D4 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):20C2 | 480,757 |
(C5×Dic3⋊C4)⋊21C2 = C5×Dic3⋊D4 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):21C2 | 480,763 |
(C5×Dic3⋊C4)⋊22C2 = C5×D6.D4 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):22C2 | 480,773 |
(C5×Dic3⋊C4)⋊23C2 = Dic3⋊C4⋊D5 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):23C2 | 480,424 |
(C5×Dic3⋊C4)⋊24C2 = D10⋊Dic6 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):24C2 | 480,425 |
(C5×Dic3⋊C4)⋊25C2 = (C4×Dic5)⋊S3 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):25C2 | 480,463 |
(C5×Dic3⋊C4)⋊26C2 = D5×Dic3⋊C4 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):26C2 | 480,468 |
(C5×Dic3⋊C4)⋊27C2 = D30.C2⋊C4 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):27C2 | 480,478 |
(C5×Dic3⋊C4)⋊28C2 = C15⋊20(C4×D4) | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):28C2 | 480,520 |
(C5×Dic3⋊C4)⋊29C2 = C5×C23.16D6 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):29C2 | 480,756 |
(C5×Dic3⋊C4)⋊30C2 = C5×C23.8D6 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):30C2 | 480,758 |
(C5×Dic3⋊C4)⋊31C2 = C5×Dic3⋊4D4 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):31C2 | 480,760 |
(C5×Dic3⋊C4)⋊32C2 = C5×C23.9D6 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):32C2 | 480,762 |
(C5×Dic3⋊C4)⋊33C2 = C5×S3×C4⋊C4 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):33C2 | 480,770 |
(C5×Dic3⋊C4)⋊34C2 = C5×D6⋊Q8 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):34C2 | 480,775 |
(C5×Dic3⋊C4)⋊35C2 = C5×C4⋊C4⋊S3 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):35C2 | 480,777 |
(C5×Dic3⋊C4)⋊36C2 = C5×C23.23D6 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):36C2 | 480,814 |
(C5×Dic3⋊C4)⋊37C2 = C5×C23.14D6 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):37C2 | 480,818 |
(C5×Dic3⋊C4)⋊38C2 = C5×D6⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 240 | | (C5xDic3:C4):38C2 | 480,825 |
(C5×Dic3⋊C4)⋊39C2 = C5×C42⋊2S3 | φ: trivial image | 240 | | (C5xDic3:C4):39C2 | 480,751 |
(C5×Dic3⋊C4)⋊40C2 = C20×C3⋊D4 | φ: trivial image | 240 | | (C5xDic3:C4):40C2 | 480,807 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C5×Dic3⋊C4).1C2 = C5×C12.6Q8 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 480 | | (C5xDic3:C4).1C2 | 480,749 |
(C5×Dic3⋊C4).2C2 = Dic3⋊Dic10 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 480 | | (C5xDic3:C4).2C2 | 480,404 |
(C5×Dic3⋊C4).3C2 = Dic5.1Dic6 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 480 | | (C5xDic3:C4).3C2 | 480,410 |
(C5×Dic3⋊C4).4C2 = Dic3.Dic10 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 480 | | (C5xDic3:C4).4C2 | 480,419 |
(C5×Dic3⋊C4).5C2 = Dic15⋊5Q8 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 480 | | (C5xDic3:C4).5C2 | 480,401 |
(C5×Dic3⋊C4).6C2 = Dic15.4Q8 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 480 | | (C5xDic3:C4).6C2 | 480,458 |
(C5×Dic3⋊C4).7C2 = Dic15⋊1Q8 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 480 | | (C5xDic3:C4).7C2 | 480,403 |
(C5×Dic3⋊C4).8C2 = Dic15.2Q8 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 480 | | (C5xDic3:C4).8C2 | 480,415 |
(C5×Dic3⋊C4).9C2 = Dic3.2Dic10 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 480 | | (C5xDic3:C4).9C2 | 480,422 |
(C5×Dic3⋊C4).10C2 = C5×C12⋊Q8 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 480 | | (C5xDic3:C4).10C2 | 480,767 |
(C5×Dic3⋊C4).11C2 = C5×C4.Dic6 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 480 | | (C5xDic3:C4).11C2 | 480,769 |
(C5×Dic3⋊C4).12C2 = Dic5⋊5Dic6 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 480 | | (C5xDic3:C4).12C2 | 480,399 |
(C5×Dic3⋊C4).13C2 = Dic5.7Dic6 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 480 | | (C5xDic3:C4).13C2 | 480,454 |
(C5×Dic3⋊C4).14C2 = C5×Dic6⋊C4 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 480 | | (C5xDic3:C4).14C2 | 480,766 |
(C5×Dic3⋊C4).15C2 = C5×Dic3.Q8 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 480 | | (C5xDic3:C4).15C2 | 480,768 |
(C5×Dic3⋊C4).16C2 = C5×Dic3⋊Q8 | φ: C2/C1 → C2 ⊆ Out C5×Dic3⋊C4 | 480 | | (C5xDic3:C4).16C2 | 480,823 |
(C5×Dic3⋊C4).17C2 = C20×Dic6 | φ: trivial image | 480 | | (C5xDic3:C4).17C2 | 480,747 |