Copied to
clipboard

G = D302D4order 480 = 25·3·5

2nd semidirect product of D30 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D302D4, Dic33D20, (C2×D60)⋊2C2, C6.63(D4×D5), C51(Dic3⋊D4), C31(C4⋊D20), Dic3⋊C48D5, (C5×Dic3)⋊2D4, C2.25(S3×D20), C10.65(S3×D4), (C2×C20).29D6, C6.23(C2×D20), D10⋊C46S3, C1511(C4⋊D4), C30.153(C2×D4), (C2×C12).29D10, D304C420C2, C30.91(C4○D4), (C2×C60).14C22, (C22×D5).20D6, C10.17(C4○D12), (C2×C30).149C23, C6.19(Q82D5), (C2×Dic5).121D6, (C2×Dic3).46D10, C2.16(D10⋊D6), C2.19(C12.28D10), (C6×Dic5).89C22, (C10×Dic3).90C22, (C22×D15).52C22, (C2×C3⋊D20)⋊6C2, (C2×C4).62(S3×D5), (C5×Dic3⋊C4)⋊8C2, (C3×D10⋊C4)⋊6C2, (D5×C2×C6).34C22, C22.201(C2×S3×D5), (C2×D30.C2)⋊11C2, (C2×C6).161(C22×D5), (C2×C10).161(C22×S3), SmallGroup(480,535)

Series: Derived Chief Lower central Upper central

C1C2×C30 — D302D4
C1C5C15C30C2×C30D5×C2×C6C2×C3⋊D20 — D302D4
C15C2×C30 — D302D4
C1C22C2×C4

Generators and relations for D302D4
 G = < a,b,c,d | a30=b2=c4=d2=1, bab=a-1, cac-1=a11, dad=a19, cbc-1=a10b, dbd=a3b, dcd=c-1 >

Subgroups: 1324 in 188 conjugacy classes, 50 normal (44 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C2×C4, C2×C4, D4, C23, D5, C10, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C15, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic5, C20, D10, C2×C10, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C22×S3, C22×C6, C3×D5, D15, C30, C4⋊D4, C4×D5, D20, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, Dic3⋊C4, D6⋊C4, C3×C22⋊C4, S3×C2×C4, C2×D12, C2×C3⋊D4, C5×Dic3, C5×Dic3, C3×Dic5, C60, C6×D5, D30, D30, C2×C30, D10⋊C4, D10⋊C4, C5×C4⋊C4, C2×C4×D5, C2×D20, Dic3⋊D4, D30.C2, C3⋊D20, C6×Dic5, C10×Dic3, D60, C2×C60, D5×C2×C6, C22×D15, C4⋊D20, D304C4, C3×D10⋊C4, C5×Dic3⋊C4, C2×D30.C2, C2×C3⋊D20, C2×D60, D302D4
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, C4○D4, D10, C22×S3, C4⋊D4, D20, C22×D5, C4○D12, S3×D4, S3×D5, C2×D20, D4×D5, Q82D5, Dic3⋊D4, C2×S3×D5, C4⋊D20, C12.28D10, S3×D20, D10⋊D6, D302D4

Smallest permutation representation of D302D4
On 240 points
Generators in S240
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 93)(2 92)(3 91)(4 120)(5 119)(6 118)(7 117)(8 116)(9 115)(10 114)(11 113)(12 112)(13 111)(14 110)(15 109)(16 108)(17 107)(18 106)(19 105)(20 104)(21 103)(22 102)(23 101)(24 100)(25 99)(26 98)(27 97)(28 96)(29 95)(30 94)(31 130)(32 129)(33 128)(34 127)(35 126)(36 125)(37 124)(38 123)(39 122)(40 121)(41 150)(42 149)(43 148)(44 147)(45 146)(46 145)(47 144)(48 143)(49 142)(50 141)(51 140)(52 139)(53 138)(54 137)(55 136)(56 135)(57 134)(58 133)(59 132)(60 131)(61 225)(62 224)(63 223)(64 222)(65 221)(66 220)(67 219)(68 218)(69 217)(70 216)(71 215)(72 214)(73 213)(74 212)(75 211)(76 240)(77 239)(78 238)(79 237)(80 236)(81 235)(82 234)(83 233)(84 232)(85 231)(86 230)(87 229)(88 228)(89 227)(90 226)(151 201)(152 200)(153 199)(154 198)(155 197)(156 196)(157 195)(158 194)(159 193)(160 192)(161 191)(162 190)(163 189)(164 188)(165 187)(166 186)(167 185)(168 184)(169 183)(170 182)(171 181)(172 210)(173 209)(174 208)(175 207)(176 206)(177 205)(178 204)(179 203)(180 202)
(1 237 94 80)(2 218 95 61)(3 229 96 72)(4 240 97 83)(5 221 98 64)(6 232 99 75)(7 213 100 86)(8 224 101 67)(9 235 102 78)(10 216 103 89)(11 227 104 70)(12 238 105 81)(13 219 106 62)(14 230 107 73)(15 211 108 84)(16 222 109 65)(17 233 110 76)(18 214 111 87)(19 225 112 68)(20 236 113 79)(21 217 114 90)(22 228 115 71)(23 239 116 82)(24 220 117 63)(25 231 118 74)(26 212 119 85)(27 223 120 66)(28 234 91 77)(29 215 92 88)(30 226 93 69)(31 172 130 200)(32 153 131 181)(33 164 132 192)(34 175 133 203)(35 156 134 184)(36 167 135 195)(37 178 136 206)(38 159 137 187)(39 170 138 198)(40 151 139 209)(41 162 140 190)(42 173 141 201)(43 154 142 182)(44 165 143 193)(45 176 144 204)(46 157 145 185)(47 168 146 196)(48 179 147 207)(49 160 148 188)(50 171 149 199)(51 152 150 210)(52 163 121 191)(53 174 122 202)(54 155 123 183)(55 166 124 194)(56 177 125 205)(57 158 126 186)(58 169 127 197)(59 180 128 208)(60 161 129 189)
(1 170)(2 159)(3 178)(4 167)(5 156)(6 175)(7 164)(8 153)(9 172)(10 161)(11 180)(12 169)(13 158)(14 177)(15 166)(16 155)(17 174)(18 163)(19 152)(20 171)(21 160)(22 179)(23 168)(24 157)(25 176)(26 165)(27 154)(28 173)(29 162)(30 151)(31 235)(32 224)(33 213)(34 232)(35 221)(36 240)(37 229)(38 218)(39 237)(40 226)(41 215)(42 234)(43 223)(44 212)(45 231)(46 220)(47 239)(48 228)(49 217)(50 236)(51 225)(52 214)(53 233)(54 222)(55 211)(56 230)(57 219)(58 238)(59 227)(60 216)(61 137)(62 126)(63 145)(64 134)(65 123)(66 142)(67 131)(68 150)(69 139)(70 128)(71 147)(72 136)(73 125)(74 144)(75 133)(76 122)(77 141)(78 130)(79 149)(80 138)(81 127)(82 146)(83 135)(84 124)(85 143)(86 132)(87 121)(88 140)(89 129)(90 148)(91 201)(92 190)(93 209)(94 198)(95 187)(96 206)(97 195)(98 184)(99 203)(100 192)(101 181)(102 200)(103 189)(104 208)(105 197)(106 186)(107 205)(108 194)(109 183)(110 202)(111 191)(112 210)(113 199)(114 188)(115 207)(116 196)(117 185)(118 204)(119 193)(120 182)

G:=sub<Sym(240)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,93)(2,92)(3,91)(4,120)(5,119)(6,118)(7,117)(8,116)(9,115)(10,114)(11,113)(12,112)(13,111)(14,110)(15,109)(16,108)(17,107)(18,106)(19,105)(20,104)(21,103)(22,102)(23,101)(24,100)(25,99)(26,98)(27,97)(28,96)(29,95)(30,94)(31,130)(32,129)(33,128)(34,127)(35,126)(36,125)(37,124)(38,123)(39,122)(40,121)(41,150)(42,149)(43,148)(44,147)(45,146)(46,145)(47,144)(48,143)(49,142)(50,141)(51,140)(52,139)(53,138)(54,137)(55,136)(56,135)(57,134)(58,133)(59,132)(60,131)(61,225)(62,224)(63,223)(64,222)(65,221)(66,220)(67,219)(68,218)(69,217)(70,216)(71,215)(72,214)(73,213)(74,212)(75,211)(76,240)(77,239)(78,238)(79,237)(80,236)(81,235)(82,234)(83,233)(84,232)(85,231)(86,230)(87,229)(88,228)(89,227)(90,226)(151,201)(152,200)(153,199)(154,198)(155,197)(156,196)(157,195)(158,194)(159,193)(160,192)(161,191)(162,190)(163,189)(164,188)(165,187)(166,186)(167,185)(168,184)(169,183)(170,182)(171,181)(172,210)(173,209)(174,208)(175,207)(176,206)(177,205)(178,204)(179,203)(180,202), (1,237,94,80)(2,218,95,61)(3,229,96,72)(4,240,97,83)(5,221,98,64)(6,232,99,75)(7,213,100,86)(8,224,101,67)(9,235,102,78)(10,216,103,89)(11,227,104,70)(12,238,105,81)(13,219,106,62)(14,230,107,73)(15,211,108,84)(16,222,109,65)(17,233,110,76)(18,214,111,87)(19,225,112,68)(20,236,113,79)(21,217,114,90)(22,228,115,71)(23,239,116,82)(24,220,117,63)(25,231,118,74)(26,212,119,85)(27,223,120,66)(28,234,91,77)(29,215,92,88)(30,226,93,69)(31,172,130,200)(32,153,131,181)(33,164,132,192)(34,175,133,203)(35,156,134,184)(36,167,135,195)(37,178,136,206)(38,159,137,187)(39,170,138,198)(40,151,139,209)(41,162,140,190)(42,173,141,201)(43,154,142,182)(44,165,143,193)(45,176,144,204)(46,157,145,185)(47,168,146,196)(48,179,147,207)(49,160,148,188)(50,171,149,199)(51,152,150,210)(52,163,121,191)(53,174,122,202)(54,155,123,183)(55,166,124,194)(56,177,125,205)(57,158,126,186)(58,169,127,197)(59,180,128,208)(60,161,129,189), (1,170)(2,159)(3,178)(4,167)(5,156)(6,175)(7,164)(8,153)(9,172)(10,161)(11,180)(12,169)(13,158)(14,177)(15,166)(16,155)(17,174)(18,163)(19,152)(20,171)(21,160)(22,179)(23,168)(24,157)(25,176)(26,165)(27,154)(28,173)(29,162)(30,151)(31,235)(32,224)(33,213)(34,232)(35,221)(36,240)(37,229)(38,218)(39,237)(40,226)(41,215)(42,234)(43,223)(44,212)(45,231)(46,220)(47,239)(48,228)(49,217)(50,236)(51,225)(52,214)(53,233)(54,222)(55,211)(56,230)(57,219)(58,238)(59,227)(60,216)(61,137)(62,126)(63,145)(64,134)(65,123)(66,142)(67,131)(68,150)(69,139)(70,128)(71,147)(72,136)(73,125)(74,144)(75,133)(76,122)(77,141)(78,130)(79,149)(80,138)(81,127)(82,146)(83,135)(84,124)(85,143)(86,132)(87,121)(88,140)(89,129)(90,148)(91,201)(92,190)(93,209)(94,198)(95,187)(96,206)(97,195)(98,184)(99,203)(100,192)(101,181)(102,200)(103,189)(104,208)(105,197)(106,186)(107,205)(108,194)(109,183)(110,202)(111,191)(112,210)(113,199)(114,188)(115,207)(116,196)(117,185)(118,204)(119,193)(120,182)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,93)(2,92)(3,91)(4,120)(5,119)(6,118)(7,117)(8,116)(9,115)(10,114)(11,113)(12,112)(13,111)(14,110)(15,109)(16,108)(17,107)(18,106)(19,105)(20,104)(21,103)(22,102)(23,101)(24,100)(25,99)(26,98)(27,97)(28,96)(29,95)(30,94)(31,130)(32,129)(33,128)(34,127)(35,126)(36,125)(37,124)(38,123)(39,122)(40,121)(41,150)(42,149)(43,148)(44,147)(45,146)(46,145)(47,144)(48,143)(49,142)(50,141)(51,140)(52,139)(53,138)(54,137)(55,136)(56,135)(57,134)(58,133)(59,132)(60,131)(61,225)(62,224)(63,223)(64,222)(65,221)(66,220)(67,219)(68,218)(69,217)(70,216)(71,215)(72,214)(73,213)(74,212)(75,211)(76,240)(77,239)(78,238)(79,237)(80,236)(81,235)(82,234)(83,233)(84,232)(85,231)(86,230)(87,229)(88,228)(89,227)(90,226)(151,201)(152,200)(153,199)(154,198)(155,197)(156,196)(157,195)(158,194)(159,193)(160,192)(161,191)(162,190)(163,189)(164,188)(165,187)(166,186)(167,185)(168,184)(169,183)(170,182)(171,181)(172,210)(173,209)(174,208)(175,207)(176,206)(177,205)(178,204)(179,203)(180,202), (1,237,94,80)(2,218,95,61)(3,229,96,72)(4,240,97,83)(5,221,98,64)(6,232,99,75)(7,213,100,86)(8,224,101,67)(9,235,102,78)(10,216,103,89)(11,227,104,70)(12,238,105,81)(13,219,106,62)(14,230,107,73)(15,211,108,84)(16,222,109,65)(17,233,110,76)(18,214,111,87)(19,225,112,68)(20,236,113,79)(21,217,114,90)(22,228,115,71)(23,239,116,82)(24,220,117,63)(25,231,118,74)(26,212,119,85)(27,223,120,66)(28,234,91,77)(29,215,92,88)(30,226,93,69)(31,172,130,200)(32,153,131,181)(33,164,132,192)(34,175,133,203)(35,156,134,184)(36,167,135,195)(37,178,136,206)(38,159,137,187)(39,170,138,198)(40,151,139,209)(41,162,140,190)(42,173,141,201)(43,154,142,182)(44,165,143,193)(45,176,144,204)(46,157,145,185)(47,168,146,196)(48,179,147,207)(49,160,148,188)(50,171,149,199)(51,152,150,210)(52,163,121,191)(53,174,122,202)(54,155,123,183)(55,166,124,194)(56,177,125,205)(57,158,126,186)(58,169,127,197)(59,180,128,208)(60,161,129,189), (1,170)(2,159)(3,178)(4,167)(5,156)(6,175)(7,164)(8,153)(9,172)(10,161)(11,180)(12,169)(13,158)(14,177)(15,166)(16,155)(17,174)(18,163)(19,152)(20,171)(21,160)(22,179)(23,168)(24,157)(25,176)(26,165)(27,154)(28,173)(29,162)(30,151)(31,235)(32,224)(33,213)(34,232)(35,221)(36,240)(37,229)(38,218)(39,237)(40,226)(41,215)(42,234)(43,223)(44,212)(45,231)(46,220)(47,239)(48,228)(49,217)(50,236)(51,225)(52,214)(53,233)(54,222)(55,211)(56,230)(57,219)(58,238)(59,227)(60,216)(61,137)(62,126)(63,145)(64,134)(65,123)(66,142)(67,131)(68,150)(69,139)(70,128)(71,147)(72,136)(73,125)(74,144)(75,133)(76,122)(77,141)(78,130)(79,149)(80,138)(81,127)(82,146)(83,135)(84,124)(85,143)(86,132)(87,121)(88,140)(89,129)(90,148)(91,201)(92,190)(93,209)(94,198)(95,187)(96,206)(97,195)(98,184)(99,203)(100,192)(101,181)(102,200)(103,189)(104,208)(105,197)(106,186)(107,205)(108,194)(109,183)(110,202)(111,191)(112,210)(113,199)(114,188)(115,207)(116,196)(117,185)(118,204)(119,193)(120,182) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,93),(2,92),(3,91),(4,120),(5,119),(6,118),(7,117),(8,116),(9,115),(10,114),(11,113),(12,112),(13,111),(14,110),(15,109),(16,108),(17,107),(18,106),(19,105),(20,104),(21,103),(22,102),(23,101),(24,100),(25,99),(26,98),(27,97),(28,96),(29,95),(30,94),(31,130),(32,129),(33,128),(34,127),(35,126),(36,125),(37,124),(38,123),(39,122),(40,121),(41,150),(42,149),(43,148),(44,147),(45,146),(46,145),(47,144),(48,143),(49,142),(50,141),(51,140),(52,139),(53,138),(54,137),(55,136),(56,135),(57,134),(58,133),(59,132),(60,131),(61,225),(62,224),(63,223),(64,222),(65,221),(66,220),(67,219),(68,218),(69,217),(70,216),(71,215),(72,214),(73,213),(74,212),(75,211),(76,240),(77,239),(78,238),(79,237),(80,236),(81,235),(82,234),(83,233),(84,232),(85,231),(86,230),(87,229),(88,228),(89,227),(90,226),(151,201),(152,200),(153,199),(154,198),(155,197),(156,196),(157,195),(158,194),(159,193),(160,192),(161,191),(162,190),(163,189),(164,188),(165,187),(166,186),(167,185),(168,184),(169,183),(170,182),(171,181),(172,210),(173,209),(174,208),(175,207),(176,206),(177,205),(178,204),(179,203),(180,202)], [(1,237,94,80),(2,218,95,61),(3,229,96,72),(4,240,97,83),(5,221,98,64),(6,232,99,75),(7,213,100,86),(8,224,101,67),(9,235,102,78),(10,216,103,89),(11,227,104,70),(12,238,105,81),(13,219,106,62),(14,230,107,73),(15,211,108,84),(16,222,109,65),(17,233,110,76),(18,214,111,87),(19,225,112,68),(20,236,113,79),(21,217,114,90),(22,228,115,71),(23,239,116,82),(24,220,117,63),(25,231,118,74),(26,212,119,85),(27,223,120,66),(28,234,91,77),(29,215,92,88),(30,226,93,69),(31,172,130,200),(32,153,131,181),(33,164,132,192),(34,175,133,203),(35,156,134,184),(36,167,135,195),(37,178,136,206),(38,159,137,187),(39,170,138,198),(40,151,139,209),(41,162,140,190),(42,173,141,201),(43,154,142,182),(44,165,143,193),(45,176,144,204),(46,157,145,185),(47,168,146,196),(48,179,147,207),(49,160,148,188),(50,171,149,199),(51,152,150,210),(52,163,121,191),(53,174,122,202),(54,155,123,183),(55,166,124,194),(56,177,125,205),(57,158,126,186),(58,169,127,197),(59,180,128,208),(60,161,129,189)], [(1,170),(2,159),(3,178),(4,167),(5,156),(6,175),(7,164),(8,153),(9,172),(10,161),(11,180),(12,169),(13,158),(14,177),(15,166),(16,155),(17,174),(18,163),(19,152),(20,171),(21,160),(22,179),(23,168),(24,157),(25,176),(26,165),(27,154),(28,173),(29,162),(30,151),(31,235),(32,224),(33,213),(34,232),(35,221),(36,240),(37,229),(38,218),(39,237),(40,226),(41,215),(42,234),(43,223),(44,212),(45,231),(46,220),(47,239),(48,228),(49,217),(50,236),(51,225),(52,214),(53,233),(54,222),(55,211),(56,230),(57,219),(58,238),(59,227),(60,216),(61,137),(62,126),(63,145),(64,134),(65,123),(66,142),(67,131),(68,150),(69,139),(70,128),(71,147),(72,136),(73,125),(74,144),(75,133),(76,122),(77,141),(78,130),(79,149),(80,138),(81,127),(82,146),(83,135),(84,124),(85,143),(86,132),(87,121),(88,140),(89,129),(90,148),(91,201),(92,190),(93,209),(94,198),(95,187),(96,206),(97,195),(98,184),(99,203),(100,192),(101,181),(102,200),(103,189),(104,208),(105,197),(106,186),(107,205),(108,194),(109,183),(110,202),(111,191),(112,210),(113,199),(114,188),(115,207),(116,196),(117,185),(118,204),(119,193),(120,182)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F5A5B6A6B6C6D6E10A···10F12A12B12C12D15A15B20A20B20C20D20E···20L30A···30F60A···60H
order122222223444444556666610···101212121215152020202020···2030···3060···60
size11112030306024661010122222220202···244202044444412···124···44···4

60 irreducible representations

dim111111122222222222244444444
type+++++++++++++++++++++++++
imageC1C2C2C2C2C2C2S3D4D4D5D6D6D6C4○D4D10D10D20C4○D12S3×D4S3×D5D4×D5Q82D5C2×S3×D5C12.28D10S3×D20D10⋊D6
kernelD302D4D304C4C3×D10⋊C4C5×Dic3⋊C4C2×D30.C2C2×C3⋊D20C2×D60D10⋊C4C5×Dic3D30Dic3⋊C4C2×Dic5C2×C20C22×D5C30C2×Dic3C2×C12Dic3C10C10C2×C4C6C6C22C2C2C2
# reps111112112221112428422222444

Matrix representation of D302D4 in GL4(𝔽61) generated by

06000
1100
0001
006044
,
06000
60000
00171
001744
,
11000
505000
0010
0001
,
91800
435200
0022
002959
G:=sub<GL(4,GF(61))| [0,1,0,0,60,1,0,0,0,0,0,60,0,0,1,44],[0,60,0,0,60,0,0,0,0,0,17,17,0,0,1,44],[11,50,0,0,0,50,0,0,0,0,1,0,0,0,0,1],[9,43,0,0,18,52,0,0,0,0,2,29,0,0,2,59] >;

D302D4 in GAP, Magma, Sage, TeX

D_{30}\rtimes_2D_4
% in TeX

G:=Group("D30:2D4");
// GroupNames label

G:=SmallGroup(480,535);
// by ID

G=gap.SmallGroup(480,535);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,253,120,254,219,142,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^30=b^2=c^4=d^2=1,b*a*b=a^-1,c*a*c^-1=a^11,d*a*d=a^19,c*b*c^-1=a^10*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽