Extensions 1→N→G→Q→1 with N=C4×S3 and Q=Dic5

Direct product G=N×Q with N=C4×S3 and Q=Dic5
dρLabelID
C4×S3×Dic5240C4xS3xDic5480,473

Semidirect products G=N:Q with N=C4×S3 and Q=Dic5
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1Dic5 = (S3×C20)⋊5C4φ: Dic5/C10C2 ⊆ Out C4×S3240(C4xS3):1Dic5480,414
(C4×S3)⋊2Dic5 = S3×C4⋊Dic5φ: Dic5/C10C2 ⊆ Out C4×S3240(C4xS3):2Dic5480,502
(C4×S3)⋊3Dic5 = (S3×C20)⋊7C4φ: Dic5/C10C2 ⊆ Out C4×S3240(C4xS3):3Dic5480,447

Non-split extensions G=N.Q with N=C4×S3 and Q=Dic5
extensionφ:Q→Out NdρLabelID
(C4×S3).1Dic5 = S3×C4.Dic5φ: Dic5/C10C2 ⊆ Out C4×S31204(C4xS3).1Dic5480,363
(C4×S3).2Dic5 = C40.52D6φ: Dic5/C10C2 ⊆ Out C4×S32404(C4xS3).2Dic5480,11
(C4×S3).3Dic5 = C2×D6.Dic5φ: Dic5/C10C2 ⊆ Out C4×S3240(C4xS3).3Dic5480,370
(C4×S3).4Dic5 = S3×C52C16φ: trivial image2404(C4xS3).4Dic5480,8
(C4×S3).5Dic5 = C2×S3×C52C8φ: trivial image240(C4xS3).5Dic5480,361

׿
×
𝔽