Extensions 1→N→G→Q→1 with N=C5×C3⋊Q16 and Q=C2

Direct product G=N×Q with N=C5×C3⋊Q16 and Q=C2
dρLabelID
C10×C3⋊Q16480C10xC3:Q16480,822

Semidirect products G=N:Q with N=C5×C3⋊Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×C3⋊Q16)⋊1C2 = D5×C3⋊Q16φ: C2/C1C2 ⊆ Out C5×C3⋊Q162408-(C5xC3:Q16):1C2480,583
(C5×C3⋊Q16)⋊2C2 = D20.13D6φ: C2/C1C2 ⊆ Out C5×C3⋊Q162408-(C5xC3:Q16):2C2480,584
(C5×C3⋊Q16)⋊3C2 = D15⋊Q16φ: C2/C1C2 ⊆ Out C5×C3⋊Q162408-(C5xC3:Q16):3C2480,587
(C5×C3⋊Q16)⋊4C2 = C60.C23φ: C2/C1C2 ⊆ Out C5×C3⋊Q162408+(C5xC3:Q16):4C2480,588
(C5×C3⋊Q16)⋊5C2 = C60.39C23φ: C2/C1C2 ⊆ Out C5×C3⋊Q162408+(C5xC3:Q16):5C2480,591
(C5×C3⋊Q16)⋊6C2 = D20.D6φ: C2/C1C2 ⊆ Out C5×C3⋊Q162408+(C5xC3:Q16):6C2480,592
(C5×C3⋊Q16)⋊7C2 = D20.16D6φ: C2/C1C2 ⊆ Out C5×C3⋊Q162408+(C5xC3:Q16):7C2480,597
(C5×C3⋊Q16)⋊8C2 = D20.17D6φ: C2/C1C2 ⊆ Out C5×C3⋊Q162408-(C5xC3:Q16):8C2480,598
(C5×C3⋊Q16)⋊9C2 = C5×D4.D6φ: C2/C1C2 ⊆ Out C5×C3⋊Q162404(C5xC3:Q16):9C2480,794
(C5×C3⋊Q16)⋊10C2 = C5×Q8.7D6φ: C2/C1C2 ⊆ Out C5×C3⋊Q162404(C5xC3:Q16):10C2480,795
(C5×C3⋊Q16)⋊11C2 = C5×S3×Q16φ: C2/C1C2 ⊆ Out C5×C3⋊Q162404(C5xC3:Q16):11C2480,796
(C5×C3⋊Q16)⋊12C2 = C5×Q16⋊S3φ: C2/C1C2 ⊆ Out C5×C3⋊Q162404(C5xC3:Q16):12C2480,797
(C5×C3⋊Q16)⋊13C2 = C5×Q8.11D6φ: C2/C1C2 ⊆ Out C5×C3⋊Q162404(C5xC3:Q16):13C2480,821
(C5×C3⋊Q16)⋊14C2 = C5×Q8.14D6φ: C2/C1C2 ⊆ Out C5×C3⋊Q162404(C5xC3:Q16):14C2480,830
(C5×C3⋊Q16)⋊15C2 = C5×Q8.13D6φ: trivial image2404(C5xC3:Q16):15C2480,829


׿
×
𝔽