Copied to
clipboard

G = C5×C3⋊Q16order 240 = 24·3·5

Direct product of C5 and C3⋊Q16

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C5×C3⋊Q16, C159Q16, C20.39D6, C30.50D4, C60.46C22, Dic6.2C10, C3⋊C8.C10, C32(C5×Q16), C4.4(S3×C10), C6.10(C5×D4), Q8.2(C5×S3), (C5×Q8).4S3, C12.4(C2×C10), (C3×Q8).1C10, (Q8×C15).3C2, (C5×Dic6).4C2, C10.26(C3⋊D4), (C5×C3⋊C8).2C2, C2.7(C5×C3⋊D4), SmallGroup(240,63)

Series: Derived Chief Lower central Upper central

C1C12 — C5×C3⋊Q16
C1C3C6C12C60C5×Dic6 — C5×C3⋊Q16
C3C6C12 — C5×C3⋊Q16
C1C10C20C5×Q8

Generators and relations for C5×C3⋊Q16
 G = < a,b,c,d | a5=b3=c8=1, d2=c4, ab=ba, ac=ca, ad=da, cbc-1=b-1, bd=db, dcd-1=c-1 >

2C4
6C4
3Q8
3C8
2C12
2Dic3
2C20
6C20
3Q16
3C5×Q8
3C40
2C60
2C5×Dic3
3C5×Q16

Smallest permutation representation of C5×C3⋊Q16
Regular action on 240 points
Generators in S240
(1 181 79 57 121)(2 182 80 58 122)(3 183 73 59 123)(4 184 74 60 124)(5 177 75 61 125)(6 178 76 62 126)(7 179 77 63 127)(8 180 78 64 128)(9 133 50 68 84)(10 134 51 69 85)(11 135 52 70 86)(12 136 53 71 87)(13 129 54 72 88)(14 130 55 65 81)(15 131 56 66 82)(16 132 49 67 83)(17 41 110 32 159)(18 42 111 25 160)(19 43 112 26 153)(20 44 105 27 154)(21 45 106 28 155)(22 46 107 29 156)(23 47 108 30 157)(24 48 109 31 158)(33 166 202 150 174)(34 167 203 151 175)(35 168 204 152 176)(36 161 205 145 169)(37 162 206 146 170)(38 163 207 147 171)(39 164 208 148 172)(40 165 201 149 173)(89 113 215 101 199)(90 114 216 102 200)(91 115 209 103 193)(92 116 210 104 194)(93 117 211 97 195)(94 118 212 98 196)(95 119 213 99 197)(96 120 214 100 198)(137 234 218 225 189)(138 235 219 226 190)(139 236 220 227 191)(140 237 221 228 192)(141 238 222 229 185)(142 239 223 230 186)(143 240 224 231 187)(144 233 217 232 188)
(1 68 226)(2 227 69)(3 70 228)(4 229 71)(5 72 230)(6 231 65)(7 66 232)(8 225 67)(9 138 79)(10 80 139)(11 140 73)(12 74 141)(13 142 75)(14 76 143)(15 144 77)(16 78 137)(17 148 89)(18 90 149)(19 150 91)(20 92 151)(21 152 93)(22 94 145)(23 146 95)(24 96 147)(25 102 165)(26 166 103)(27 104 167)(28 168 97)(29 98 161)(30 162 99)(31 100 163)(32 164 101)(33 209 112)(34 105 210)(35 211 106)(36 107 212)(37 213 108)(38 109 214)(39 215 110)(40 111 216)(41 172 113)(42 114 173)(43 174 115)(44 116 175)(45 176 117)(46 118 169)(47 170 119)(48 120 171)(49 128 218)(50 219 121)(51 122 220)(52 221 123)(53 124 222)(54 223 125)(55 126 224)(56 217 127)(57 133 235)(58 236 134)(59 135 237)(60 238 136)(61 129 239)(62 240 130)(63 131 233)(64 234 132)(81 178 187)(82 188 179)(83 180 189)(84 190 181)(85 182 191)(86 192 183)(87 184 185)(88 186 177)(153 202 193)(154 194 203)(155 204 195)(156 196 205)(157 206 197)(158 198 207)(159 208 199)(160 200 201)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176)(177 178 179 180 181 182 183 184)(185 186 187 188 189 190 191 192)(193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208)(209 210 211 212 213 214 215 216)(217 218 219 220 221 222 223 224)(225 226 227 228 229 230 231 232)(233 234 235 236 237 238 239 240)
(1 95 5 91)(2 94 6 90)(3 93 7 89)(4 92 8 96)(9 108 13 112)(10 107 14 111)(11 106 15 110)(12 105 16 109)(17 70 21 66)(18 69 22 65)(19 68 23 72)(20 67 24 71)(25 134 29 130)(26 133 30 129)(27 132 31 136)(28 131 32 135)(33 138 37 142)(34 137 38 141)(35 144 39 140)(36 143 40 139)(41 86 45 82)(42 85 46 81)(43 84 47 88)(44 83 48 87)(49 158 53 154)(50 157 54 153)(51 156 55 160)(52 155 56 159)(57 99 61 103)(58 98 62 102)(59 97 63 101)(60 104 64 100)(73 211 77 215)(74 210 78 214)(75 209 79 213)(76 216 80 212)(113 183 117 179)(114 182 118 178)(115 181 119 177)(116 180 120 184)(121 197 125 193)(122 196 126 200)(123 195 127 199)(124 194 128 198)(145 231 149 227)(146 230 150 226)(147 229 151 225)(148 228 152 232)(161 240 165 236)(162 239 166 235)(163 238 167 234)(164 237 168 233)(169 187 173 191)(170 186 174 190)(171 185 175 189)(172 192 176 188)(201 220 205 224)(202 219 206 223)(203 218 207 222)(204 217 208 221)

G:=sub<Sym(240)| (1,181,79,57,121)(2,182,80,58,122)(3,183,73,59,123)(4,184,74,60,124)(5,177,75,61,125)(6,178,76,62,126)(7,179,77,63,127)(8,180,78,64,128)(9,133,50,68,84)(10,134,51,69,85)(11,135,52,70,86)(12,136,53,71,87)(13,129,54,72,88)(14,130,55,65,81)(15,131,56,66,82)(16,132,49,67,83)(17,41,110,32,159)(18,42,111,25,160)(19,43,112,26,153)(20,44,105,27,154)(21,45,106,28,155)(22,46,107,29,156)(23,47,108,30,157)(24,48,109,31,158)(33,166,202,150,174)(34,167,203,151,175)(35,168,204,152,176)(36,161,205,145,169)(37,162,206,146,170)(38,163,207,147,171)(39,164,208,148,172)(40,165,201,149,173)(89,113,215,101,199)(90,114,216,102,200)(91,115,209,103,193)(92,116,210,104,194)(93,117,211,97,195)(94,118,212,98,196)(95,119,213,99,197)(96,120,214,100,198)(137,234,218,225,189)(138,235,219,226,190)(139,236,220,227,191)(140,237,221,228,192)(141,238,222,229,185)(142,239,223,230,186)(143,240,224,231,187)(144,233,217,232,188), (1,68,226)(2,227,69)(3,70,228)(4,229,71)(5,72,230)(6,231,65)(7,66,232)(8,225,67)(9,138,79)(10,80,139)(11,140,73)(12,74,141)(13,142,75)(14,76,143)(15,144,77)(16,78,137)(17,148,89)(18,90,149)(19,150,91)(20,92,151)(21,152,93)(22,94,145)(23,146,95)(24,96,147)(25,102,165)(26,166,103)(27,104,167)(28,168,97)(29,98,161)(30,162,99)(31,100,163)(32,164,101)(33,209,112)(34,105,210)(35,211,106)(36,107,212)(37,213,108)(38,109,214)(39,215,110)(40,111,216)(41,172,113)(42,114,173)(43,174,115)(44,116,175)(45,176,117)(46,118,169)(47,170,119)(48,120,171)(49,128,218)(50,219,121)(51,122,220)(52,221,123)(53,124,222)(54,223,125)(55,126,224)(56,217,127)(57,133,235)(58,236,134)(59,135,237)(60,238,136)(61,129,239)(62,240,130)(63,131,233)(64,234,132)(81,178,187)(82,188,179)(83,180,189)(84,190,181)(85,182,191)(86,192,183)(87,184,185)(88,186,177)(153,202,193)(154,194,203)(155,204,195)(156,196,205)(157,206,197)(158,198,207)(159,208,199)(160,200,201), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208)(209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224)(225,226,227,228,229,230,231,232)(233,234,235,236,237,238,239,240), (1,95,5,91)(2,94,6,90)(3,93,7,89)(4,92,8,96)(9,108,13,112)(10,107,14,111)(11,106,15,110)(12,105,16,109)(17,70,21,66)(18,69,22,65)(19,68,23,72)(20,67,24,71)(25,134,29,130)(26,133,30,129)(27,132,31,136)(28,131,32,135)(33,138,37,142)(34,137,38,141)(35,144,39,140)(36,143,40,139)(41,86,45,82)(42,85,46,81)(43,84,47,88)(44,83,48,87)(49,158,53,154)(50,157,54,153)(51,156,55,160)(52,155,56,159)(57,99,61,103)(58,98,62,102)(59,97,63,101)(60,104,64,100)(73,211,77,215)(74,210,78,214)(75,209,79,213)(76,216,80,212)(113,183,117,179)(114,182,118,178)(115,181,119,177)(116,180,120,184)(121,197,125,193)(122,196,126,200)(123,195,127,199)(124,194,128,198)(145,231,149,227)(146,230,150,226)(147,229,151,225)(148,228,152,232)(161,240,165,236)(162,239,166,235)(163,238,167,234)(164,237,168,233)(169,187,173,191)(170,186,174,190)(171,185,175,189)(172,192,176,188)(201,220,205,224)(202,219,206,223)(203,218,207,222)(204,217,208,221)>;

G:=Group( (1,181,79,57,121)(2,182,80,58,122)(3,183,73,59,123)(4,184,74,60,124)(5,177,75,61,125)(6,178,76,62,126)(7,179,77,63,127)(8,180,78,64,128)(9,133,50,68,84)(10,134,51,69,85)(11,135,52,70,86)(12,136,53,71,87)(13,129,54,72,88)(14,130,55,65,81)(15,131,56,66,82)(16,132,49,67,83)(17,41,110,32,159)(18,42,111,25,160)(19,43,112,26,153)(20,44,105,27,154)(21,45,106,28,155)(22,46,107,29,156)(23,47,108,30,157)(24,48,109,31,158)(33,166,202,150,174)(34,167,203,151,175)(35,168,204,152,176)(36,161,205,145,169)(37,162,206,146,170)(38,163,207,147,171)(39,164,208,148,172)(40,165,201,149,173)(89,113,215,101,199)(90,114,216,102,200)(91,115,209,103,193)(92,116,210,104,194)(93,117,211,97,195)(94,118,212,98,196)(95,119,213,99,197)(96,120,214,100,198)(137,234,218,225,189)(138,235,219,226,190)(139,236,220,227,191)(140,237,221,228,192)(141,238,222,229,185)(142,239,223,230,186)(143,240,224,231,187)(144,233,217,232,188), (1,68,226)(2,227,69)(3,70,228)(4,229,71)(5,72,230)(6,231,65)(7,66,232)(8,225,67)(9,138,79)(10,80,139)(11,140,73)(12,74,141)(13,142,75)(14,76,143)(15,144,77)(16,78,137)(17,148,89)(18,90,149)(19,150,91)(20,92,151)(21,152,93)(22,94,145)(23,146,95)(24,96,147)(25,102,165)(26,166,103)(27,104,167)(28,168,97)(29,98,161)(30,162,99)(31,100,163)(32,164,101)(33,209,112)(34,105,210)(35,211,106)(36,107,212)(37,213,108)(38,109,214)(39,215,110)(40,111,216)(41,172,113)(42,114,173)(43,174,115)(44,116,175)(45,176,117)(46,118,169)(47,170,119)(48,120,171)(49,128,218)(50,219,121)(51,122,220)(52,221,123)(53,124,222)(54,223,125)(55,126,224)(56,217,127)(57,133,235)(58,236,134)(59,135,237)(60,238,136)(61,129,239)(62,240,130)(63,131,233)(64,234,132)(81,178,187)(82,188,179)(83,180,189)(84,190,181)(85,182,191)(86,192,183)(87,184,185)(88,186,177)(153,202,193)(154,194,203)(155,204,195)(156,196,205)(157,206,197)(158,198,207)(159,208,199)(160,200,201), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208)(209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224)(225,226,227,228,229,230,231,232)(233,234,235,236,237,238,239,240), (1,95,5,91)(2,94,6,90)(3,93,7,89)(4,92,8,96)(9,108,13,112)(10,107,14,111)(11,106,15,110)(12,105,16,109)(17,70,21,66)(18,69,22,65)(19,68,23,72)(20,67,24,71)(25,134,29,130)(26,133,30,129)(27,132,31,136)(28,131,32,135)(33,138,37,142)(34,137,38,141)(35,144,39,140)(36,143,40,139)(41,86,45,82)(42,85,46,81)(43,84,47,88)(44,83,48,87)(49,158,53,154)(50,157,54,153)(51,156,55,160)(52,155,56,159)(57,99,61,103)(58,98,62,102)(59,97,63,101)(60,104,64,100)(73,211,77,215)(74,210,78,214)(75,209,79,213)(76,216,80,212)(113,183,117,179)(114,182,118,178)(115,181,119,177)(116,180,120,184)(121,197,125,193)(122,196,126,200)(123,195,127,199)(124,194,128,198)(145,231,149,227)(146,230,150,226)(147,229,151,225)(148,228,152,232)(161,240,165,236)(162,239,166,235)(163,238,167,234)(164,237,168,233)(169,187,173,191)(170,186,174,190)(171,185,175,189)(172,192,176,188)(201,220,205,224)(202,219,206,223)(203,218,207,222)(204,217,208,221) );

G=PermutationGroup([[(1,181,79,57,121),(2,182,80,58,122),(3,183,73,59,123),(4,184,74,60,124),(5,177,75,61,125),(6,178,76,62,126),(7,179,77,63,127),(8,180,78,64,128),(9,133,50,68,84),(10,134,51,69,85),(11,135,52,70,86),(12,136,53,71,87),(13,129,54,72,88),(14,130,55,65,81),(15,131,56,66,82),(16,132,49,67,83),(17,41,110,32,159),(18,42,111,25,160),(19,43,112,26,153),(20,44,105,27,154),(21,45,106,28,155),(22,46,107,29,156),(23,47,108,30,157),(24,48,109,31,158),(33,166,202,150,174),(34,167,203,151,175),(35,168,204,152,176),(36,161,205,145,169),(37,162,206,146,170),(38,163,207,147,171),(39,164,208,148,172),(40,165,201,149,173),(89,113,215,101,199),(90,114,216,102,200),(91,115,209,103,193),(92,116,210,104,194),(93,117,211,97,195),(94,118,212,98,196),(95,119,213,99,197),(96,120,214,100,198),(137,234,218,225,189),(138,235,219,226,190),(139,236,220,227,191),(140,237,221,228,192),(141,238,222,229,185),(142,239,223,230,186),(143,240,224,231,187),(144,233,217,232,188)], [(1,68,226),(2,227,69),(3,70,228),(4,229,71),(5,72,230),(6,231,65),(7,66,232),(8,225,67),(9,138,79),(10,80,139),(11,140,73),(12,74,141),(13,142,75),(14,76,143),(15,144,77),(16,78,137),(17,148,89),(18,90,149),(19,150,91),(20,92,151),(21,152,93),(22,94,145),(23,146,95),(24,96,147),(25,102,165),(26,166,103),(27,104,167),(28,168,97),(29,98,161),(30,162,99),(31,100,163),(32,164,101),(33,209,112),(34,105,210),(35,211,106),(36,107,212),(37,213,108),(38,109,214),(39,215,110),(40,111,216),(41,172,113),(42,114,173),(43,174,115),(44,116,175),(45,176,117),(46,118,169),(47,170,119),(48,120,171),(49,128,218),(50,219,121),(51,122,220),(52,221,123),(53,124,222),(54,223,125),(55,126,224),(56,217,127),(57,133,235),(58,236,134),(59,135,237),(60,238,136),(61,129,239),(62,240,130),(63,131,233),(64,234,132),(81,178,187),(82,188,179),(83,180,189),(84,190,181),(85,182,191),(86,192,183),(87,184,185),(88,186,177),(153,202,193),(154,194,203),(155,204,195),(156,196,205),(157,206,197),(158,198,207),(159,208,199),(160,200,201)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176),(177,178,179,180,181,182,183,184),(185,186,187,188,189,190,191,192),(193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208),(209,210,211,212,213,214,215,216),(217,218,219,220,221,222,223,224),(225,226,227,228,229,230,231,232),(233,234,235,236,237,238,239,240)], [(1,95,5,91),(2,94,6,90),(3,93,7,89),(4,92,8,96),(9,108,13,112),(10,107,14,111),(11,106,15,110),(12,105,16,109),(17,70,21,66),(18,69,22,65),(19,68,23,72),(20,67,24,71),(25,134,29,130),(26,133,30,129),(27,132,31,136),(28,131,32,135),(33,138,37,142),(34,137,38,141),(35,144,39,140),(36,143,40,139),(41,86,45,82),(42,85,46,81),(43,84,47,88),(44,83,48,87),(49,158,53,154),(50,157,54,153),(51,156,55,160),(52,155,56,159),(57,99,61,103),(58,98,62,102),(59,97,63,101),(60,104,64,100),(73,211,77,215),(74,210,78,214),(75,209,79,213),(76,216,80,212),(113,183,117,179),(114,182,118,178),(115,181,119,177),(116,180,120,184),(121,197,125,193),(122,196,126,200),(123,195,127,199),(124,194,128,198),(145,231,149,227),(146,230,150,226),(147,229,151,225),(148,228,152,232),(161,240,165,236),(162,239,166,235),(163,238,167,234),(164,237,168,233),(169,187,173,191),(170,186,174,190),(171,185,175,189),(172,192,176,188),(201,220,205,224),(202,219,206,223),(203,218,207,222),(204,217,208,221)]])

C5×C3⋊Q16 is a maximal subgroup of
D20.13D6  D15⋊Q16  C60.C23  C60.39C23  D20.D6  D20.16D6  D20.17D6  C5×S3×Q16

60 conjugacy classes

class 1  2  3 4A4B4C5A5B5C5D 6 8A8B10A10B10C10D12A12B12C15A15B15C15D20A20B20C20D20E20F20G20H20I20J20K20L30A30B30C30D40A···40H60A···60L
order123444555568810101010121212151515152020202020202020202020203030303040···4060···60
size1122412111126611114442222222244441212121222226···64···4

60 irreducible representations

dim11111111222222222244
type+++++++--
imageC1C2C2C2C5C10C10C10S3D4D6Q16C3⋊D4C5×S3C5×D4S3×C10C5×Q16C5×C3⋊D4C3⋊Q16C5×C3⋊Q16
kernelC5×C3⋊Q16C5×C3⋊C8C5×Dic6Q8×C15C3⋊Q16C3⋊C8Dic6C3×Q8C5×Q8C30C20C15C10Q8C6C4C3C2C5C1
# reps11114444111224448814

Matrix representation of C5×C3⋊Q16 in GL4(𝔽241) generated by

205000
020500
00980
00098
,
1000
0100
000240
001240
,
021900
1121900
0092142
00234149
,
21615800
542500
0070101
00140171
G:=sub<GL(4,GF(241))| [205,0,0,0,0,205,0,0,0,0,98,0,0,0,0,98],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,240,240],[0,11,0,0,219,219,0,0,0,0,92,234,0,0,142,149],[216,54,0,0,158,25,0,0,0,0,70,140,0,0,101,171] >;

C5×C3⋊Q16 in GAP, Magma, Sage, TeX

C_5\times C_3\rtimes Q_{16}
% in TeX

G:=Group("C5xC3:Q16");
// GroupNames label

G:=SmallGroup(240,63);
// by ID

G=gap.SmallGroup(240,63);
# by ID

G:=PCGroup([6,-2,-2,-5,-2,-2,-3,240,265,247,1443,729,69,5765]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^3=c^8=1,d^2=c^4,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of C5×C3⋊Q16 in TeX

׿
×
𝔽