extension | φ:Q→Out N | d | ρ | Label | ID |
(Dic3×C2×C10)⋊1C2 = C2×D10⋊Dic3 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):1C2 | 480,611 |
(Dic3×C2×C10)⋊2C2 = (C2×C30).D4 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):2C2 | 480,612 |
(Dic3×C2×C10)⋊3C2 = C2×D30⋊4C4 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):3C2 | 480,616 |
(Dic3×C2×C10)⋊4C2 = C10.(C2×D12) | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):4C2 | 480,618 |
(Dic3×C2×C10)⋊5C2 = Dic3×C5⋊D4 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):5C2 | 480,629 |
(Dic3×C2×C10)⋊6C2 = C15⋊28(C4×D4) | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):6C2 | 480,632 |
(Dic3×C2×C10)⋊7C2 = (C2×C6)⋊D20 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):7C2 | 480,645 |
(Dic3×C2×C10)⋊8C2 = C22×D5×Dic3 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):8C2 | 480,1112 |
(Dic3×C2×C10)⋊9C2 = C2×Dic5.D6 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):9C2 | 480,1113 |
(Dic3×C2×C10)⋊10C2 = C22×D30.C2 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):10C2 | 480,1117 |
(Dic3×C2×C10)⋊11C2 = C22×C3⋊D20 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):11C2 | 480,1119 |
(Dic3×C2×C10)⋊12C2 = C5×Dic3⋊4D4 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):12C2 | 480,760 |
(Dic3×C2×C10)⋊13C2 = C5×C23.21D6 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):13C2 | 480,765 |
(Dic3×C2×C10)⋊14C2 = C10×D6⋊C4 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):14C2 | 480,806 |
(Dic3×C2×C10)⋊15C2 = C5×D4×Dic3 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):15C2 | 480,813 |
(Dic3×C2×C10)⋊16C2 = C5×C23.23D6 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):16C2 | 480,814 |
(Dic3×C2×C10)⋊17C2 = C5×C23.14D6 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):17C2 | 480,818 |
(Dic3×C2×C10)⋊18C2 = C10×C6.D4 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):18C2 | 480,831 |
(Dic3×C2×C10)⋊19C2 = C10×D4⋊2S3 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):19C2 | 480,1155 |
(Dic3×C2×C10)⋊20C2 = C2×C10×C3⋊D4 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10):20C2 | 480,1164 |
(Dic3×C2×C10)⋊21C2 = S3×C22×C20 | φ: trivial image | 240 | | (Dic3xC2xC10):21C2 | 480,1151 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(Dic3×C2×C10).1C2 = C30.24C42 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 480 | | (Dic3xC2xC10).1C2 | 480,70 |
(Dic3×C2×C10).2C2 = C2×Dic3×Dic5 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 480 | | (Dic3xC2xC10).2C2 | 480,603 |
(Dic3×C2×C10).3C2 = C23.26(S3×D5) | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10).3C2 | 480,605 |
(Dic3×C2×C10).4C2 = C2×C30.Q8 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 480 | | (Dic3xC2xC10).4C2 | 480,617 |
(Dic3×C2×C10).5C2 = C2×Dic15⋊5C4 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 480 | | (Dic3xC2xC10).5C2 | 480,620 |
(Dic3×C2×C10).6C2 = C2×C6.Dic10 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 480 | | (Dic3xC2xC10).6C2 | 480,621 |
(Dic3×C2×C10).7C2 = (C2×C10)⋊8Dic6 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10).7C2 | 480,651 |
(Dic3×C2×C10).8C2 = C22×C15⋊Q8 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 480 | | (Dic3xC2xC10).8C2 | 480,1121 |
(Dic3×C2×C10).9C2 = C5×C6.C42 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 480 | | (Dic3xC2xC10).9C2 | 480,150 |
(Dic3×C2×C10).10C2 = C5×C23.16D6 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10).10C2 | 480,756 |
(Dic3×C2×C10).11C2 = C5×Dic3.D4 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 240 | | (Dic3xC2xC10).11C2 | 480,757 |
(Dic3×C2×C10).12C2 = C10×Dic3⋊C4 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 480 | | (Dic3xC2xC10).12C2 | 480,802 |
(Dic3×C2×C10).13C2 = C10×C4⋊Dic3 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 480 | | (Dic3xC2xC10).13C2 | 480,804 |
(Dic3×C2×C10).14C2 = C2×C10×Dic6 | φ: C2/C1 → C2 ⊆ Out Dic3×C2×C10 | 480 | | (Dic3xC2xC10).14C2 | 480,1150 |
(Dic3×C2×C10).15C2 = Dic3×C2×C20 | φ: trivial image | 480 | | (Dic3xC2xC10).15C2 | 480,801 |