Copied to
clipboard

G = C10×D42S3order 480 = 25·3·5

Direct product of C10 and D42S3

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10×D42S3, C30.89C24, C60.236C23, (C5×D4)⋊27D6, (C6×D4)⋊6C10, D45(S3×C10), (D4×C30)⋊20C2, (D4×C10)⋊17S3, C3016(C4○D4), Dic67(C2×C10), (C2×C20).370D6, C6.6(C23×C10), (S3×C20)⋊23C22, (C2×Dic6)⋊12C10, (C10×Dic6)⋊28C2, (D4×C15)⋊37C22, C23.24(S3×C10), C10.74(S3×C23), D6.2(C22×C10), (C22×C10).95D6, (S3×C10).37C23, (C2×C60).373C22, C12.20(C22×C10), C20.209(C22×S3), (C2×C30).445C23, (C22×Dic3)⋊8C10, (C5×Dic6)⋊34C22, (C10×Dic3)⋊36C22, (C5×Dic3).39C23, Dic3.3(C22×C10), (C22×C30).128C22, (S3×C2×C4)⋊4C10, C62(C5×C4○D4), C32(C10×C4○D4), (S3×C2×C20)⋊14C2, (C2×D4)⋊8(C5×S3), C1525(C2×C4○D4), C4.20(S3×C2×C10), (C4×S3)⋊4(C2×C10), (C3×D4)⋊6(C2×C10), C3⋊D42(C2×C10), C22.1(S3×C2×C10), C2.7(S3×C22×C10), (C2×C3⋊D4)⋊10C10, (C10×C3⋊D4)⋊25C2, (C2×C4).60(S3×C10), (Dic3×C2×C10)⋊19C2, (C2×C12).47(C2×C10), (C2×Dic3)⋊9(C2×C10), (C5×C3⋊D4)⋊18C22, (C2×C6).1(C22×C10), (S3×C2×C10).121C22, (C22×C6).23(C2×C10), (C2×C10).21(C22×S3), (C22×S3).30(C2×C10), SmallGroup(480,1155)

Series: Derived Chief Lower central Upper central

C1C6 — C10×D42S3
C1C3C6C30S3×C10S3×C2×C10S3×C2×C20 — C10×D42S3
C3C6 — C10×D42S3
C1C2×C10D4×C10

Generators and relations for C10×D42S3
 G = < a,b,c,d,e | a10=b4=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b2c, ede=d-1 >

Subgroups: 612 in 328 conjugacy classes, 178 normal (30 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C5, S3, C6, C6, C6, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C10, C10, C10, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C15, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C20, C20, C2×C10, C2×C10, C2×C10, Dic6, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C5×S3, C30, C30, C30, C2×C4○D4, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C22×C10, C22×C10, C2×Dic6, S3×C2×C4, D42S3, C22×Dic3, C2×C3⋊D4, C6×D4, C5×Dic3, C60, S3×C10, S3×C10, C2×C30, C2×C30, C2×C30, C22×C20, D4×C10, D4×C10, Q8×C10, C5×C4○D4, C2×D42S3, C5×Dic6, S3×C20, C10×Dic3, C10×Dic3, C5×C3⋊D4, C2×C60, D4×C15, S3×C2×C10, C22×C30, C10×C4○D4, C10×Dic6, S3×C2×C20, C5×D42S3, Dic3×C2×C10, C10×C3⋊D4, D4×C30, C10×D42S3
Quotients: C1, C2, C22, C5, S3, C23, C10, D6, C4○D4, C24, C2×C10, C22×S3, C5×S3, C2×C4○D4, C22×C10, D42S3, S3×C23, S3×C10, C5×C4○D4, C23×C10, C2×D42S3, S3×C2×C10, C10×C4○D4, C5×D42S3, S3×C22×C10, C10×D42S3

Smallest permutation representation of C10×D42S3
On 240 points
Generators in S240
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168 169 170)(171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190)(191 192 193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220)(221 222 223 224 225 226 227 228 229 230)(231 232 233 234 235 236 237 238 239 240)
(1 165 105 116)(2 166 106 117)(3 167 107 118)(4 168 108 119)(5 169 109 120)(6 170 110 111)(7 161 101 112)(8 162 102 113)(9 163 103 114)(10 164 104 115)(11 218 31 210)(12 219 32 201)(13 220 33 202)(14 211 34 203)(15 212 35 204)(16 213 36 205)(17 214 37 206)(18 215 38 207)(19 216 39 208)(20 217 40 209)(21 224 235 175)(22 225 236 176)(23 226 237 177)(24 227 238 178)(25 228 239 179)(26 229 240 180)(27 230 231 171)(28 221 232 172)(29 222 233 173)(30 223 234 174)(41 200 55 186)(42 191 56 187)(43 192 57 188)(44 193 58 189)(45 194 59 190)(46 195 60 181)(47 196 51 182)(48 197 52 183)(49 198 53 184)(50 199 54 185)(61 135 75 121)(62 136 76 122)(63 137 77 123)(64 138 78 124)(65 139 79 125)(66 140 80 126)(67 131 71 127)(68 132 72 128)(69 133 73 129)(70 134 74 130)(81 159 99 141)(82 160 100 142)(83 151 91 143)(84 152 92 144)(85 153 93 145)(86 154 94 146)(87 155 95 147)(88 156 96 148)(89 157 97 149)(90 158 98 150)
(1 111)(2 112)(3 113)(4 114)(5 115)(6 116)(7 117)(8 118)(9 119)(10 120)(11 205)(12 206)(13 207)(14 208)(15 209)(16 210)(17 201)(18 202)(19 203)(20 204)(21 180)(22 171)(23 172)(24 173)(25 174)(26 175)(27 176)(28 177)(29 178)(30 179)(31 213)(32 214)(33 215)(34 216)(35 217)(36 218)(37 219)(38 220)(39 211)(40 212)(41 181)(42 182)(43 183)(44 184)(45 185)(46 186)(47 187)(48 188)(49 189)(50 190)(51 191)(52 192)(53 193)(54 194)(55 195)(56 196)(57 197)(58 198)(59 199)(60 200)(61 126)(62 127)(63 128)(64 129)(65 130)(66 121)(67 122)(68 123)(69 124)(70 125)(71 136)(72 137)(73 138)(74 139)(75 140)(76 131)(77 132)(78 133)(79 134)(80 135)(81 146)(82 147)(83 148)(84 149)(85 150)(86 141)(87 142)(88 143)(89 144)(90 145)(91 156)(92 157)(93 158)(94 159)(95 160)(96 151)(97 152)(98 153)(99 154)(100 155)(101 166)(102 167)(103 168)(104 169)(105 170)(106 161)(107 162)(108 163)(109 164)(110 165)(221 237)(222 238)(223 239)(224 240)(225 231)(226 232)(227 233)(228 234)(229 235)(230 236)
(1 61 97)(2 62 98)(3 63 99)(4 64 100)(5 65 91)(6 66 92)(7 67 93)(8 68 94)(9 69 95)(10 70 96)(11 51 237)(12 52 238)(13 53 239)(14 54 240)(15 55 231)(16 56 232)(17 57 233)(18 58 234)(19 59 235)(20 60 236)(21 39 45)(22 40 46)(23 31 47)(24 32 48)(25 33 49)(26 34 50)(27 35 41)(28 36 42)(29 37 43)(30 38 44)(71 85 101)(72 86 102)(73 87 103)(74 88 104)(75 89 105)(76 90 106)(77 81 107)(78 82 108)(79 83 109)(80 84 110)(111 126 152)(112 127 153)(113 128 154)(114 129 155)(115 130 156)(116 121 157)(117 122 158)(118 123 159)(119 124 160)(120 125 151)(131 145 161)(132 146 162)(133 147 163)(134 148 164)(135 149 165)(136 150 166)(137 141 167)(138 142 168)(139 143 169)(140 144 170)(171 212 186)(172 213 187)(173 214 188)(174 215 189)(175 216 190)(176 217 181)(177 218 182)(178 219 183)(179 220 184)(180 211 185)(191 221 205)(192 222 206)(193 223 207)(194 224 208)(195 225 209)(196 226 210)(197 227 201)(198 228 202)(199 229 203)(200 230 204)
(1 176)(2 177)(3 178)(4 179)(5 180)(6 171)(7 172)(8 173)(9 174)(10 175)(11 158)(12 159)(13 160)(14 151)(15 152)(16 153)(17 154)(18 155)(19 156)(20 157)(21 164)(22 165)(23 166)(24 167)(25 168)(26 169)(27 170)(28 161)(29 162)(30 163)(31 150)(32 141)(33 142)(34 143)(35 144)(36 145)(37 146)(38 147)(39 148)(40 149)(41 140)(42 131)(43 132)(44 133)(45 134)(46 135)(47 136)(48 137)(49 138)(50 139)(51 122)(52 123)(53 124)(54 125)(55 126)(56 127)(57 128)(58 129)(59 130)(60 121)(61 181)(62 182)(63 183)(64 184)(65 185)(66 186)(67 187)(68 188)(69 189)(70 190)(71 191)(72 192)(73 193)(74 194)(75 195)(76 196)(77 197)(78 198)(79 199)(80 200)(81 201)(82 202)(83 203)(84 204)(85 205)(86 206)(87 207)(88 208)(89 209)(90 210)(91 211)(92 212)(93 213)(94 214)(95 215)(96 216)(97 217)(98 218)(99 219)(100 220)(101 221)(102 222)(103 223)(104 224)(105 225)(106 226)(107 227)(108 228)(109 229)(110 230)(111 231)(112 232)(113 233)(114 234)(115 235)(116 236)(117 237)(118 238)(119 239)(120 240)

G:=sub<Sym(240)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170)(171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190)(191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220)(221,222,223,224,225,226,227,228,229,230)(231,232,233,234,235,236,237,238,239,240), (1,165,105,116)(2,166,106,117)(3,167,107,118)(4,168,108,119)(5,169,109,120)(6,170,110,111)(7,161,101,112)(8,162,102,113)(9,163,103,114)(10,164,104,115)(11,218,31,210)(12,219,32,201)(13,220,33,202)(14,211,34,203)(15,212,35,204)(16,213,36,205)(17,214,37,206)(18,215,38,207)(19,216,39,208)(20,217,40,209)(21,224,235,175)(22,225,236,176)(23,226,237,177)(24,227,238,178)(25,228,239,179)(26,229,240,180)(27,230,231,171)(28,221,232,172)(29,222,233,173)(30,223,234,174)(41,200,55,186)(42,191,56,187)(43,192,57,188)(44,193,58,189)(45,194,59,190)(46,195,60,181)(47,196,51,182)(48,197,52,183)(49,198,53,184)(50,199,54,185)(61,135,75,121)(62,136,76,122)(63,137,77,123)(64,138,78,124)(65,139,79,125)(66,140,80,126)(67,131,71,127)(68,132,72,128)(69,133,73,129)(70,134,74,130)(81,159,99,141)(82,160,100,142)(83,151,91,143)(84,152,92,144)(85,153,93,145)(86,154,94,146)(87,155,95,147)(88,156,96,148)(89,157,97,149)(90,158,98,150), (1,111)(2,112)(3,113)(4,114)(5,115)(6,116)(7,117)(8,118)(9,119)(10,120)(11,205)(12,206)(13,207)(14,208)(15,209)(16,210)(17,201)(18,202)(19,203)(20,204)(21,180)(22,171)(23,172)(24,173)(25,174)(26,175)(27,176)(28,177)(29,178)(30,179)(31,213)(32,214)(33,215)(34,216)(35,217)(36,218)(37,219)(38,220)(39,211)(40,212)(41,181)(42,182)(43,183)(44,184)(45,185)(46,186)(47,187)(48,188)(49,189)(50,190)(51,191)(52,192)(53,193)(54,194)(55,195)(56,196)(57,197)(58,198)(59,199)(60,200)(61,126)(62,127)(63,128)(64,129)(65,130)(66,121)(67,122)(68,123)(69,124)(70,125)(71,136)(72,137)(73,138)(74,139)(75,140)(76,131)(77,132)(78,133)(79,134)(80,135)(81,146)(82,147)(83,148)(84,149)(85,150)(86,141)(87,142)(88,143)(89,144)(90,145)(91,156)(92,157)(93,158)(94,159)(95,160)(96,151)(97,152)(98,153)(99,154)(100,155)(101,166)(102,167)(103,168)(104,169)(105,170)(106,161)(107,162)(108,163)(109,164)(110,165)(221,237)(222,238)(223,239)(224,240)(225,231)(226,232)(227,233)(228,234)(229,235)(230,236), (1,61,97)(2,62,98)(3,63,99)(4,64,100)(5,65,91)(6,66,92)(7,67,93)(8,68,94)(9,69,95)(10,70,96)(11,51,237)(12,52,238)(13,53,239)(14,54,240)(15,55,231)(16,56,232)(17,57,233)(18,58,234)(19,59,235)(20,60,236)(21,39,45)(22,40,46)(23,31,47)(24,32,48)(25,33,49)(26,34,50)(27,35,41)(28,36,42)(29,37,43)(30,38,44)(71,85,101)(72,86,102)(73,87,103)(74,88,104)(75,89,105)(76,90,106)(77,81,107)(78,82,108)(79,83,109)(80,84,110)(111,126,152)(112,127,153)(113,128,154)(114,129,155)(115,130,156)(116,121,157)(117,122,158)(118,123,159)(119,124,160)(120,125,151)(131,145,161)(132,146,162)(133,147,163)(134,148,164)(135,149,165)(136,150,166)(137,141,167)(138,142,168)(139,143,169)(140,144,170)(171,212,186)(172,213,187)(173,214,188)(174,215,189)(175,216,190)(176,217,181)(177,218,182)(178,219,183)(179,220,184)(180,211,185)(191,221,205)(192,222,206)(193,223,207)(194,224,208)(195,225,209)(196,226,210)(197,227,201)(198,228,202)(199,229,203)(200,230,204), (1,176)(2,177)(3,178)(4,179)(5,180)(6,171)(7,172)(8,173)(9,174)(10,175)(11,158)(12,159)(13,160)(14,151)(15,152)(16,153)(17,154)(18,155)(19,156)(20,157)(21,164)(22,165)(23,166)(24,167)(25,168)(26,169)(27,170)(28,161)(29,162)(30,163)(31,150)(32,141)(33,142)(34,143)(35,144)(36,145)(37,146)(38,147)(39,148)(40,149)(41,140)(42,131)(43,132)(44,133)(45,134)(46,135)(47,136)(48,137)(49,138)(50,139)(51,122)(52,123)(53,124)(54,125)(55,126)(56,127)(57,128)(58,129)(59,130)(60,121)(61,181)(62,182)(63,183)(64,184)(65,185)(66,186)(67,187)(68,188)(69,189)(70,190)(71,191)(72,192)(73,193)(74,194)(75,195)(76,196)(77,197)(78,198)(79,199)(80,200)(81,201)(82,202)(83,203)(84,204)(85,205)(86,206)(87,207)(88,208)(89,209)(90,210)(91,211)(92,212)(93,213)(94,214)(95,215)(96,216)(97,217)(98,218)(99,219)(100,220)(101,221)(102,222)(103,223)(104,224)(105,225)(106,226)(107,227)(108,228)(109,229)(110,230)(111,231)(112,232)(113,233)(114,234)(115,235)(116,236)(117,237)(118,238)(119,239)(120,240)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170)(171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190)(191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220)(221,222,223,224,225,226,227,228,229,230)(231,232,233,234,235,236,237,238,239,240), (1,165,105,116)(2,166,106,117)(3,167,107,118)(4,168,108,119)(5,169,109,120)(6,170,110,111)(7,161,101,112)(8,162,102,113)(9,163,103,114)(10,164,104,115)(11,218,31,210)(12,219,32,201)(13,220,33,202)(14,211,34,203)(15,212,35,204)(16,213,36,205)(17,214,37,206)(18,215,38,207)(19,216,39,208)(20,217,40,209)(21,224,235,175)(22,225,236,176)(23,226,237,177)(24,227,238,178)(25,228,239,179)(26,229,240,180)(27,230,231,171)(28,221,232,172)(29,222,233,173)(30,223,234,174)(41,200,55,186)(42,191,56,187)(43,192,57,188)(44,193,58,189)(45,194,59,190)(46,195,60,181)(47,196,51,182)(48,197,52,183)(49,198,53,184)(50,199,54,185)(61,135,75,121)(62,136,76,122)(63,137,77,123)(64,138,78,124)(65,139,79,125)(66,140,80,126)(67,131,71,127)(68,132,72,128)(69,133,73,129)(70,134,74,130)(81,159,99,141)(82,160,100,142)(83,151,91,143)(84,152,92,144)(85,153,93,145)(86,154,94,146)(87,155,95,147)(88,156,96,148)(89,157,97,149)(90,158,98,150), (1,111)(2,112)(3,113)(4,114)(5,115)(6,116)(7,117)(8,118)(9,119)(10,120)(11,205)(12,206)(13,207)(14,208)(15,209)(16,210)(17,201)(18,202)(19,203)(20,204)(21,180)(22,171)(23,172)(24,173)(25,174)(26,175)(27,176)(28,177)(29,178)(30,179)(31,213)(32,214)(33,215)(34,216)(35,217)(36,218)(37,219)(38,220)(39,211)(40,212)(41,181)(42,182)(43,183)(44,184)(45,185)(46,186)(47,187)(48,188)(49,189)(50,190)(51,191)(52,192)(53,193)(54,194)(55,195)(56,196)(57,197)(58,198)(59,199)(60,200)(61,126)(62,127)(63,128)(64,129)(65,130)(66,121)(67,122)(68,123)(69,124)(70,125)(71,136)(72,137)(73,138)(74,139)(75,140)(76,131)(77,132)(78,133)(79,134)(80,135)(81,146)(82,147)(83,148)(84,149)(85,150)(86,141)(87,142)(88,143)(89,144)(90,145)(91,156)(92,157)(93,158)(94,159)(95,160)(96,151)(97,152)(98,153)(99,154)(100,155)(101,166)(102,167)(103,168)(104,169)(105,170)(106,161)(107,162)(108,163)(109,164)(110,165)(221,237)(222,238)(223,239)(224,240)(225,231)(226,232)(227,233)(228,234)(229,235)(230,236), (1,61,97)(2,62,98)(3,63,99)(4,64,100)(5,65,91)(6,66,92)(7,67,93)(8,68,94)(9,69,95)(10,70,96)(11,51,237)(12,52,238)(13,53,239)(14,54,240)(15,55,231)(16,56,232)(17,57,233)(18,58,234)(19,59,235)(20,60,236)(21,39,45)(22,40,46)(23,31,47)(24,32,48)(25,33,49)(26,34,50)(27,35,41)(28,36,42)(29,37,43)(30,38,44)(71,85,101)(72,86,102)(73,87,103)(74,88,104)(75,89,105)(76,90,106)(77,81,107)(78,82,108)(79,83,109)(80,84,110)(111,126,152)(112,127,153)(113,128,154)(114,129,155)(115,130,156)(116,121,157)(117,122,158)(118,123,159)(119,124,160)(120,125,151)(131,145,161)(132,146,162)(133,147,163)(134,148,164)(135,149,165)(136,150,166)(137,141,167)(138,142,168)(139,143,169)(140,144,170)(171,212,186)(172,213,187)(173,214,188)(174,215,189)(175,216,190)(176,217,181)(177,218,182)(178,219,183)(179,220,184)(180,211,185)(191,221,205)(192,222,206)(193,223,207)(194,224,208)(195,225,209)(196,226,210)(197,227,201)(198,228,202)(199,229,203)(200,230,204), (1,176)(2,177)(3,178)(4,179)(5,180)(6,171)(7,172)(8,173)(9,174)(10,175)(11,158)(12,159)(13,160)(14,151)(15,152)(16,153)(17,154)(18,155)(19,156)(20,157)(21,164)(22,165)(23,166)(24,167)(25,168)(26,169)(27,170)(28,161)(29,162)(30,163)(31,150)(32,141)(33,142)(34,143)(35,144)(36,145)(37,146)(38,147)(39,148)(40,149)(41,140)(42,131)(43,132)(44,133)(45,134)(46,135)(47,136)(48,137)(49,138)(50,139)(51,122)(52,123)(53,124)(54,125)(55,126)(56,127)(57,128)(58,129)(59,130)(60,121)(61,181)(62,182)(63,183)(64,184)(65,185)(66,186)(67,187)(68,188)(69,189)(70,190)(71,191)(72,192)(73,193)(74,194)(75,195)(76,196)(77,197)(78,198)(79,199)(80,200)(81,201)(82,202)(83,203)(84,204)(85,205)(86,206)(87,207)(88,208)(89,209)(90,210)(91,211)(92,212)(93,213)(94,214)(95,215)(96,216)(97,217)(98,218)(99,219)(100,220)(101,221)(102,222)(103,223)(104,224)(105,225)(106,226)(107,227)(108,228)(109,229)(110,230)(111,231)(112,232)(113,233)(114,234)(115,235)(116,236)(117,237)(118,238)(119,239)(120,240) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168,169,170),(171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190),(191,192,193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220),(221,222,223,224,225,226,227,228,229,230),(231,232,233,234,235,236,237,238,239,240)], [(1,165,105,116),(2,166,106,117),(3,167,107,118),(4,168,108,119),(5,169,109,120),(6,170,110,111),(7,161,101,112),(8,162,102,113),(9,163,103,114),(10,164,104,115),(11,218,31,210),(12,219,32,201),(13,220,33,202),(14,211,34,203),(15,212,35,204),(16,213,36,205),(17,214,37,206),(18,215,38,207),(19,216,39,208),(20,217,40,209),(21,224,235,175),(22,225,236,176),(23,226,237,177),(24,227,238,178),(25,228,239,179),(26,229,240,180),(27,230,231,171),(28,221,232,172),(29,222,233,173),(30,223,234,174),(41,200,55,186),(42,191,56,187),(43,192,57,188),(44,193,58,189),(45,194,59,190),(46,195,60,181),(47,196,51,182),(48,197,52,183),(49,198,53,184),(50,199,54,185),(61,135,75,121),(62,136,76,122),(63,137,77,123),(64,138,78,124),(65,139,79,125),(66,140,80,126),(67,131,71,127),(68,132,72,128),(69,133,73,129),(70,134,74,130),(81,159,99,141),(82,160,100,142),(83,151,91,143),(84,152,92,144),(85,153,93,145),(86,154,94,146),(87,155,95,147),(88,156,96,148),(89,157,97,149),(90,158,98,150)], [(1,111),(2,112),(3,113),(4,114),(5,115),(6,116),(7,117),(8,118),(9,119),(10,120),(11,205),(12,206),(13,207),(14,208),(15,209),(16,210),(17,201),(18,202),(19,203),(20,204),(21,180),(22,171),(23,172),(24,173),(25,174),(26,175),(27,176),(28,177),(29,178),(30,179),(31,213),(32,214),(33,215),(34,216),(35,217),(36,218),(37,219),(38,220),(39,211),(40,212),(41,181),(42,182),(43,183),(44,184),(45,185),(46,186),(47,187),(48,188),(49,189),(50,190),(51,191),(52,192),(53,193),(54,194),(55,195),(56,196),(57,197),(58,198),(59,199),(60,200),(61,126),(62,127),(63,128),(64,129),(65,130),(66,121),(67,122),(68,123),(69,124),(70,125),(71,136),(72,137),(73,138),(74,139),(75,140),(76,131),(77,132),(78,133),(79,134),(80,135),(81,146),(82,147),(83,148),(84,149),(85,150),(86,141),(87,142),(88,143),(89,144),(90,145),(91,156),(92,157),(93,158),(94,159),(95,160),(96,151),(97,152),(98,153),(99,154),(100,155),(101,166),(102,167),(103,168),(104,169),(105,170),(106,161),(107,162),(108,163),(109,164),(110,165),(221,237),(222,238),(223,239),(224,240),(225,231),(226,232),(227,233),(228,234),(229,235),(230,236)], [(1,61,97),(2,62,98),(3,63,99),(4,64,100),(5,65,91),(6,66,92),(7,67,93),(8,68,94),(9,69,95),(10,70,96),(11,51,237),(12,52,238),(13,53,239),(14,54,240),(15,55,231),(16,56,232),(17,57,233),(18,58,234),(19,59,235),(20,60,236),(21,39,45),(22,40,46),(23,31,47),(24,32,48),(25,33,49),(26,34,50),(27,35,41),(28,36,42),(29,37,43),(30,38,44),(71,85,101),(72,86,102),(73,87,103),(74,88,104),(75,89,105),(76,90,106),(77,81,107),(78,82,108),(79,83,109),(80,84,110),(111,126,152),(112,127,153),(113,128,154),(114,129,155),(115,130,156),(116,121,157),(117,122,158),(118,123,159),(119,124,160),(120,125,151),(131,145,161),(132,146,162),(133,147,163),(134,148,164),(135,149,165),(136,150,166),(137,141,167),(138,142,168),(139,143,169),(140,144,170),(171,212,186),(172,213,187),(173,214,188),(174,215,189),(175,216,190),(176,217,181),(177,218,182),(178,219,183),(179,220,184),(180,211,185),(191,221,205),(192,222,206),(193,223,207),(194,224,208),(195,225,209),(196,226,210),(197,227,201),(198,228,202),(199,229,203),(200,230,204)], [(1,176),(2,177),(3,178),(4,179),(5,180),(6,171),(7,172),(8,173),(9,174),(10,175),(11,158),(12,159),(13,160),(14,151),(15,152),(16,153),(17,154),(18,155),(19,156),(20,157),(21,164),(22,165),(23,166),(24,167),(25,168),(26,169),(27,170),(28,161),(29,162),(30,163),(31,150),(32,141),(33,142),(34,143),(35,144),(36,145),(37,146),(38,147),(39,148),(40,149),(41,140),(42,131),(43,132),(44,133),(45,134),(46,135),(47,136),(48,137),(49,138),(50,139),(51,122),(52,123),(53,124),(54,125),(55,126),(56,127),(57,128),(58,129),(59,130),(60,121),(61,181),(62,182),(63,183),(64,184),(65,185),(66,186),(67,187),(68,188),(69,189),(70,190),(71,191),(72,192),(73,193),(74,194),(75,195),(76,196),(77,197),(78,198),(79,199),(80,200),(81,201),(82,202),(83,203),(84,204),(85,205),(86,206),(87,207),(88,208),(89,209),(90,210),(91,211),(92,212),(93,213),(94,214),(95,215),(96,216),(97,217),(98,218),(99,219),(100,220),(101,221),(102,222),(103,223),(104,224),(105,225),(106,226),(107,227),(108,228),(109,229),(110,230),(111,231),(112,232),(113,233),(114,234),(115,235),(116,236),(117,237),(118,238),(119,239),(120,240)]])

150 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H4I4J5A5B5C5D6A6B6C6D6E6F6G10A···10L10M···10AB10AC···10AJ12A12B15A15B15C15D20A···20H20I···20X20Y···20AN30A···30L30M···30AB60A···60H
order1222222222344444444445555666666610···1010···1010···1012121515151520···2020···2020···2030···3030···3060···60
size111122226622233336666111122244441···12···26···64422222···23···36···62···24···44···4

150 irreducible representations

dim11111111111111222222222244
type+++++++++++-
imageC1C2C2C2C2C2C2C5C10C10C10C10C10C10S3D6D6D6C4○D4C5×S3S3×C10S3×C10S3×C10C5×C4○D4D42S3C5×D42S3
kernelC10×D42S3C10×Dic6S3×C2×C20C5×D42S3Dic3×C2×C10C10×C3⋊D4D4×C30C2×D42S3C2×Dic6S3×C2×C4D42S3C22×Dic3C2×C3⋊D4C6×D4D4×C10C2×C20C5×D4C22×C10C30C2×D4C2×C4D4C23C6C10C2
# reps11182214443288411424441681628

Matrix representation of C10×D42S3 in GL5(𝔽61)

410000
020000
002000
00090
00009
,
600000
01000
00100
00013
0004060
,
600000
01000
00100
00013
000060
,
10000
00100
0606000
00010
00001
,
10000
0193100
0124200
0005028
0004811

G:=sub<GL(5,GF(61))| [41,0,0,0,0,0,20,0,0,0,0,0,20,0,0,0,0,0,9,0,0,0,0,0,9],[60,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,40,0,0,0,3,60],[60,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,3,60],[1,0,0,0,0,0,0,60,0,0,0,1,60,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,19,12,0,0,0,31,42,0,0,0,0,0,50,48,0,0,0,28,11] >;

C10×D42S3 in GAP, Magma, Sage, TeX

C_{10}\times D_4\rtimes_2S_3
% in TeX

G:=Group("C10xD4:2S3");
// GroupNames label

G:=SmallGroup(480,1155);
// by ID

G=gap.SmallGroup(480,1155);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-3,436,2467,633,15686]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽