Extensions 1→N→G→Q→1 with N=Dic3 and Q=C2xDic5

Direct product G=NxQ with N=Dic3 and Q=C2xDic5
dρLabelID
C2xDic3xDic5480C2xDic3xDic5480,603

Semidirect products G=N:Q with N=Dic3 and Q=C2xDic5
extensionφ:Q→Out NdρLabelID
Dic3:1(C2xDic5) = Dic5xC3:D4φ: C2xDic5/Dic5C2 ⊆ Out Dic3240Dic3:1(C2xDic5)480,627
Dic3:2(C2xDic5) = Dic15:17D4φ: C2xDic5/Dic5C2 ⊆ Out Dic3240Dic3:2(C2xDic5)480,636
Dic3:3(C2xDic5) = S3xC4:Dic5φ: C2xDic5/C2xC10C2 ⊆ Out Dic3240Dic3:3(C2xDic5)480,502
Dic3:4(C2xDic5) = C2xC6.Dic10φ: C2xDic5/C2xC10C2 ⊆ Out Dic3480Dic3:4(C2xDic5)480,621
Dic3:5(C2xDic5) = C4xS3xDic5φ: trivial image240Dic3:5(C2xDic5)480,473

Non-split extensions G=N.Q with N=Dic3 and Q=C2xDic5
extensionφ:Q→Out NdρLabelID
Dic3.1(C2xDic5) = D12.2Dic5φ: C2xDic5/Dic5C2 ⊆ Out Dic32404Dic3.1(C2xDic5)480,362
Dic3.2(C2xDic5) = D12.Dic5φ: C2xDic5/Dic5C2 ⊆ Out Dic32404Dic3.2(C2xDic5)480,364
Dic3.3(C2xDic5) = Dic5xDic6φ: C2xDic5/Dic5C2 ⊆ Out Dic3480Dic3.3(C2xDic5)480,408
Dic3.4(C2xDic5) = Dic15:7Q8φ: C2xDic5/Dic5C2 ⊆ Out Dic3480Dic3.4(C2xDic5)480,420
Dic3.5(C2xDic5) = S3xC4.Dic5φ: C2xDic5/C2xC10C2 ⊆ Out Dic31204Dic3.5(C2xDic5)480,363
Dic3.6(C2xDic5) = C2xD6.Dic5φ: C2xDic5/C2xC10C2 ⊆ Out Dic3240Dic3.6(C2xDic5)480,370
Dic3.7(C2xDic5) = (S3xC20):7C4φ: C2xDic5/C2xC10C2 ⊆ Out Dic3240Dic3.7(C2xDic5)480,447
Dic3.8(C2xDic5) = C23.26(S3xD5)φ: C2xDic5/C2xC10C2 ⊆ Out Dic3240Dic3.8(C2xDic5)480,605
Dic3.9(C2xDic5) = C2xS3xC5:2C8φ: trivial image240Dic3.9(C2xDic5)480,361
Dic3.10(C2xDic5) = (S3xC20):5C4φ: trivial image240Dic3.10(C2xDic5)480,414

׿
x
:
Z
F
o
wr
Q
<