Extensions 1→N→G→Q→1 with N=C2 and Q=D42D15

Direct product G=N×Q with N=C2 and Q=D42D15
dρLabelID
C2×D42D15240C2xD4:2D15480,1170


Non-split extensions G=N.Q with N=C2 and Q=D42D15
extensionφ:Q→Aut NdρLabelID
C2.1(D42D15) = C23.15D30central extension (φ=1)240C2.1(D4:2D15)480,842
C2.2(D42D15) = Dic1519D4central extension (φ=1)240C2.2(D4:2D15)480,846
C2.3(D42D15) = Dic1510Q8central extension (φ=1)480C2.3(D4:2D15)480,852
C2.4(D42D15) = C4⋊C47D15central extension (φ=1)240C2.4(D4:2D15)480,857
C2.5(D42D15) = D4×Dic15central extension (φ=1)240C2.5(D4:2D15)480,899
C2.6(D42D15) = C222Dic30central stem extension (φ=1)240C2.6(D4:2D15)480,843
C2.7(D42D15) = C23.8D30central stem extension (φ=1)240C2.7(D4:2D15)480,844
C2.8(D42D15) = D30.28D4central stem extension (φ=1)240C2.8(D4:2D15)480,848
C2.9(D42D15) = C23.11D30central stem extension (φ=1)240C2.9(D4:2D15)480,850
C2.10(D42D15) = C22.D60central stem extension (φ=1)240C2.10(D4:2D15)480,851
C2.11(D42D15) = Dic15.3Q8central stem extension (φ=1)480C2.11(D4:2D15)480,854
C2.12(D42D15) = C4.Dic30central stem extension (φ=1)480C2.12(D4:2D15)480,855
C2.13(D42D15) = D306Q8central stem extension (φ=1)240C2.13(D4:2D15)480,862
C2.14(D42D15) = C4⋊C4⋊D15central stem extension (φ=1)240C2.14(D4:2D15)480,863
C2.15(D42D15) = C23.22D30central stem extension (φ=1)240C2.15(D4:2D15)480,900
C2.16(D42D15) = C60.17D4central stem extension (φ=1)240C2.16(D4:2D15)480,901
C2.17(D42D15) = C602D4central stem extension (φ=1)240C2.17(D4:2D15)480,903
C2.18(D42D15) = Dic1512D4central stem extension (φ=1)240C2.18(D4:2D15)480,904

׿
×
𝔽