Copied to
clipboard

G = C4⋊C4⋊D15order 480 = 25·3·5

6th semidirect product of C4⋊C4 and D15 acting via D15/C15=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C46D15, C605C413C2, (C2×C4).31D30, (C2×C20).212D6, (C4×Dic15)⋊20C2, D303C4.4C2, (C2×C12).248D10, C30.4Q835C2, C1521(C422C2), C6.102(C4○D20), C30.221(C4○D4), C2.7(Q83D15), (C2×C30).295C23, (C2×C60).432C22, C6.43(Q82D5), C10.102(C4○D12), C6.100(D42D5), C2.14(D42D15), C10.43(Q83S3), C2.16(D6011C2), C10.100(D42S3), (C22×D15).9C22, C22.53(C22×D15), (C2×Dic15).166C22, (C5×C4⋊C4)⋊9S3, (C3×C4⋊C4)⋊9D5, (C15×C4⋊C4)⋊9C2, C57(C4⋊C4⋊S3), C37(C4⋊C4⋊D5), (C2×C6).291(C22×D5), (C2×C10).290(C22×S3), SmallGroup(480,863)

Series: Derived Chief Lower central Upper central

C1C2×C30 — C4⋊C4⋊D15
C1C5C15C30C2×C30C22×D15D303C4 — C4⋊C4⋊D15
C15C2×C30 — C4⋊C4⋊D15
C1C22C4⋊C4

Generators and relations for C4⋊C4⋊D15
 G = < a,b,c,d | a4=b4=c15=d2=1, bab-1=a-1, ac=ca, dad=ab2, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 708 in 120 conjugacy classes, 47 normal (all characteristic)
C1, C2 [×3], C2, C3, C4 [×6], C22, C22 [×3], C5, S3, C6 [×3], C2×C4 [×3], C2×C4 [×3], C23, D5, C10 [×3], Dic3 [×3], C12 [×3], D6 [×3], C2×C6, C15, C42, C22⋊C4 [×3], C4⋊C4, C4⋊C4 [×2], Dic5 [×3], C20 [×3], D10 [×3], C2×C10, C2×Dic3 [×3], C2×C12 [×3], C22×S3, D15, C30 [×3], C422C2, C2×Dic5 [×3], C2×C20 [×3], C22×D5, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4 [×3], C3×C4⋊C4, Dic15 [×3], C60 [×3], D30 [×3], C2×C30, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4 [×3], C5×C4⋊C4, C4⋊C4⋊S3, C2×Dic15 [×3], C2×C60 [×3], C22×D15, C4⋊C4⋊D5, C4×Dic15, C30.4Q8, C605C4, D303C4 [×3], C15×C4⋊C4, C4⋊C4⋊D15
Quotients: C1, C2 [×7], C22 [×7], S3, C23, D5, D6 [×3], C4○D4 [×3], D10 [×3], C22×S3, D15, C422C2, C22×D5, C4○D12, D42S3, Q83S3, D30 [×3], C4○D20, D42D5, Q82D5, C4⋊C4⋊S3, C22×D15, C4⋊C4⋊D5, D6011C2, D42D15, Q83D15, C4⋊C4⋊D15

Smallest permutation representation of C4⋊C4⋊D15
On 240 points
Generators in S240
(1 118 20 103)(2 119 21 104)(3 120 22 105)(4 106 23 91)(5 107 24 92)(6 108 25 93)(7 109 26 94)(8 110 27 95)(9 111 28 96)(10 112 29 97)(11 113 30 98)(12 114 16 99)(13 115 17 100)(14 116 18 101)(15 117 19 102)(31 87 57 72)(32 88 58 73)(33 89 59 74)(34 90 60 75)(35 76 46 61)(36 77 47 62)(37 78 48 63)(38 79 49 64)(39 80 50 65)(40 81 51 66)(41 82 52 67)(42 83 53 68)(43 84 54 69)(44 85 55 70)(45 86 56 71)(121 211 139 229)(122 212 140 230)(123 213 141 231)(124 214 142 232)(125 215 143 233)(126 216 144 234)(127 217 145 235)(128 218 146 236)(129 219 147 237)(130 220 148 238)(131 221 149 239)(132 222 150 240)(133 223 136 226)(134 224 137 227)(135 225 138 228)(151 189 174 200)(152 190 175 201)(153 191 176 202)(154 192 177 203)(155 193 178 204)(156 194 179 205)(157 195 180 206)(158 181 166 207)(159 182 167 208)(160 183 168 209)(161 184 169 210)(162 185 170 196)(163 186 171 197)(164 187 172 198)(165 188 173 199)
(1 155 32 133)(2 156 33 134)(3 157 34 135)(4 158 35 121)(5 159 36 122)(6 160 37 123)(7 161 38 124)(8 162 39 125)(9 163 40 126)(10 164 41 127)(11 165 42 128)(12 151 43 129)(13 152 44 130)(14 153 45 131)(15 154 31 132)(16 174 54 147)(17 175 55 148)(18 176 56 149)(19 177 57 150)(20 178 58 136)(21 179 59 137)(22 180 60 138)(23 166 46 139)(24 167 47 140)(25 168 48 141)(26 169 49 142)(27 170 50 143)(28 171 51 144)(29 172 52 145)(30 173 53 146)(61 211 91 181)(62 212 92 182)(63 213 93 183)(64 214 94 184)(65 215 95 185)(66 216 96 186)(67 217 97 187)(68 218 98 188)(69 219 99 189)(70 220 100 190)(71 221 101 191)(72 222 102 192)(73 223 103 193)(74 224 104 194)(75 225 105 195)(76 229 106 207)(77 230 107 208)(78 231 108 209)(79 232 109 210)(80 233 110 196)(81 234 111 197)(82 235 112 198)(83 236 113 199)(84 237 114 200)(85 238 115 201)(86 239 116 202)(87 240 117 203)(88 226 118 204)(89 227 119 205)(90 228 120 206)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160 161 162 163 164 165)(166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195)(196 197 198 199 200 201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220 221 222 223 224 225)(226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 23)(17 22)(18 21)(19 20)(24 30)(25 29)(26 28)(31 32)(33 45)(34 44)(35 43)(36 42)(37 41)(38 40)(46 54)(47 53)(48 52)(49 51)(55 60)(56 59)(57 58)(61 99)(62 98)(63 97)(64 96)(65 95)(66 94)(67 93)(68 92)(69 91)(70 105)(71 104)(72 103)(73 102)(74 101)(75 100)(76 114)(77 113)(78 112)(79 111)(80 110)(81 109)(82 108)(83 107)(84 106)(85 120)(86 119)(87 118)(88 117)(89 116)(90 115)(121 147)(122 146)(123 145)(124 144)(125 143)(126 142)(127 141)(128 140)(129 139)(130 138)(131 137)(132 136)(133 150)(134 149)(135 148)(151 166)(152 180)(153 179)(154 178)(155 177)(156 176)(157 175)(158 174)(159 173)(160 172)(161 171)(162 170)(163 169)(164 168)(165 167)(181 237)(182 236)(183 235)(184 234)(185 233)(186 232)(187 231)(188 230)(189 229)(190 228)(191 227)(192 226)(193 240)(194 239)(195 238)(196 215)(197 214)(198 213)(199 212)(200 211)(201 225)(202 224)(203 223)(204 222)(205 221)(206 220)(207 219)(208 218)(209 217)(210 216)

G:=sub<Sym(240)| (1,118,20,103)(2,119,21,104)(3,120,22,105)(4,106,23,91)(5,107,24,92)(6,108,25,93)(7,109,26,94)(8,110,27,95)(9,111,28,96)(10,112,29,97)(11,113,30,98)(12,114,16,99)(13,115,17,100)(14,116,18,101)(15,117,19,102)(31,87,57,72)(32,88,58,73)(33,89,59,74)(34,90,60,75)(35,76,46,61)(36,77,47,62)(37,78,48,63)(38,79,49,64)(39,80,50,65)(40,81,51,66)(41,82,52,67)(42,83,53,68)(43,84,54,69)(44,85,55,70)(45,86,56,71)(121,211,139,229)(122,212,140,230)(123,213,141,231)(124,214,142,232)(125,215,143,233)(126,216,144,234)(127,217,145,235)(128,218,146,236)(129,219,147,237)(130,220,148,238)(131,221,149,239)(132,222,150,240)(133,223,136,226)(134,224,137,227)(135,225,138,228)(151,189,174,200)(152,190,175,201)(153,191,176,202)(154,192,177,203)(155,193,178,204)(156,194,179,205)(157,195,180,206)(158,181,166,207)(159,182,167,208)(160,183,168,209)(161,184,169,210)(162,185,170,196)(163,186,171,197)(164,187,172,198)(165,188,173,199), (1,155,32,133)(2,156,33,134)(3,157,34,135)(4,158,35,121)(5,159,36,122)(6,160,37,123)(7,161,38,124)(8,162,39,125)(9,163,40,126)(10,164,41,127)(11,165,42,128)(12,151,43,129)(13,152,44,130)(14,153,45,131)(15,154,31,132)(16,174,54,147)(17,175,55,148)(18,176,56,149)(19,177,57,150)(20,178,58,136)(21,179,59,137)(22,180,60,138)(23,166,46,139)(24,167,47,140)(25,168,48,141)(26,169,49,142)(27,170,50,143)(28,171,51,144)(29,172,52,145)(30,173,53,146)(61,211,91,181)(62,212,92,182)(63,213,93,183)(64,214,94,184)(65,215,95,185)(66,216,96,186)(67,217,97,187)(68,218,98,188)(69,219,99,189)(70,220,100,190)(71,221,101,191)(72,222,102,192)(73,223,103,193)(74,224,104,194)(75,225,105,195)(76,229,106,207)(77,230,107,208)(78,231,108,209)(79,232,109,210)(80,233,110,196)(81,234,111,197)(82,235,112,198)(83,236,113,199)(84,237,114,200)(85,238,115,201)(86,239,116,202)(87,240,117,203)(88,226,118,204)(89,227,119,205)(90,228,120,206), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165)(166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195)(196,197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225)(226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,23)(17,22)(18,21)(19,20)(24,30)(25,29)(26,28)(31,32)(33,45)(34,44)(35,43)(36,42)(37,41)(38,40)(46,54)(47,53)(48,52)(49,51)(55,60)(56,59)(57,58)(61,99)(62,98)(63,97)(64,96)(65,95)(66,94)(67,93)(68,92)(69,91)(70,105)(71,104)(72,103)(73,102)(74,101)(75,100)(76,114)(77,113)(78,112)(79,111)(80,110)(81,109)(82,108)(83,107)(84,106)(85,120)(86,119)(87,118)(88,117)(89,116)(90,115)(121,147)(122,146)(123,145)(124,144)(125,143)(126,142)(127,141)(128,140)(129,139)(130,138)(131,137)(132,136)(133,150)(134,149)(135,148)(151,166)(152,180)(153,179)(154,178)(155,177)(156,176)(157,175)(158,174)(159,173)(160,172)(161,171)(162,170)(163,169)(164,168)(165,167)(181,237)(182,236)(183,235)(184,234)(185,233)(186,232)(187,231)(188,230)(189,229)(190,228)(191,227)(192,226)(193,240)(194,239)(195,238)(196,215)(197,214)(198,213)(199,212)(200,211)(201,225)(202,224)(203,223)(204,222)(205,221)(206,220)(207,219)(208,218)(209,217)(210,216)>;

G:=Group( (1,118,20,103)(2,119,21,104)(3,120,22,105)(4,106,23,91)(5,107,24,92)(6,108,25,93)(7,109,26,94)(8,110,27,95)(9,111,28,96)(10,112,29,97)(11,113,30,98)(12,114,16,99)(13,115,17,100)(14,116,18,101)(15,117,19,102)(31,87,57,72)(32,88,58,73)(33,89,59,74)(34,90,60,75)(35,76,46,61)(36,77,47,62)(37,78,48,63)(38,79,49,64)(39,80,50,65)(40,81,51,66)(41,82,52,67)(42,83,53,68)(43,84,54,69)(44,85,55,70)(45,86,56,71)(121,211,139,229)(122,212,140,230)(123,213,141,231)(124,214,142,232)(125,215,143,233)(126,216,144,234)(127,217,145,235)(128,218,146,236)(129,219,147,237)(130,220,148,238)(131,221,149,239)(132,222,150,240)(133,223,136,226)(134,224,137,227)(135,225,138,228)(151,189,174,200)(152,190,175,201)(153,191,176,202)(154,192,177,203)(155,193,178,204)(156,194,179,205)(157,195,180,206)(158,181,166,207)(159,182,167,208)(160,183,168,209)(161,184,169,210)(162,185,170,196)(163,186,171,197)(164,187,172,198)(165,188,173,199), (1,155,32,133)(2,156,33,134)(3,157,34,135)(4,158,35,121)(5,159,36,122)(6,160,37,123)(7,161,38,124)(8,162,39,125)(9,163,40,126)(10,164,41,127)(11,165,42,128)(12,151,43,129)(13,152,44,130)(14,153,45,131)(15,154,31,132)(16,174,54,147)(17,175,55,148)(18,176,56,149)(19,177,57,150)(20,178,58,136)(21,179,59,137)(22,180,60,138)(23,166,46,139)(24,167,47,140)(25,168,48,141)(26,169,49,142)(27,170,50,143)(28,171,51,144)(29,172,52,145)(30,173,53,146)(61,211,91,181)(62,212,92,182)(63,213,93,183)(64,214,94,184)(65,215,95,185)(66,216,96,186)(67,217,97,187)(68,218,98,188)(69,219,99,189)(70,220,100,190)(71,221,101,191)(72,222,102,192)(73,223,103,193)(74,224,104,194)(75,225,105,195)(76,229,106,207)(77,230,107,208)(78,231,108,209)(79,232,109,210)(80,233,110,196)(81,234,111,197)(82,235,112,198)(83,236,113,199)(84,237,114,200)(85,238,115,201)(86,239,116,202)(87,240,117,203)(88,226,118,204)(89,227,119,205)(90,228,120,206), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165)(166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195)(196,197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225)(226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,23)(17,22)(18,21)(19,20)(24,30)(25,29)(26,28)(31,32)(33,45)(34,44)(35,43)(36,42)(37,41)(38,40)(46,54)(47,53)(48,52)(49,51)(55,60)(56,59)(57,58)(61,99)(62,98)(63,97)(64,96)(65,95)(66,94)(67,93)(68,92)(69,91)(70,105)(71,104)(72,103)(73,102)(74,101)(75,100)(76,114)(77,113)(78,112)(79,111)(80,110)(81,109)(82,108)(83,107)(84,106)(85,120)(86,119)(87,118)(88,117)(89,116)(90,115)(121,147)(122,146)(123,145)(124,144)(125,143)(126,142)(127,141)(128,140)(129,139)(130,138)(131,137)(132,136)(133,150)(134,149)(135,148)(151,166)(152,180)(153,179)(154,178)(155,177)(156,176)(157,175)(158,174)(159,173)(160,172)(161,171)(162,170)(163,169)(164,168)(165,167)(181,237)(182,236)(183,235)(184,234)(185,233)(186,232)(187,231)(188,230)(189,229)(190,228)(191,227)(192,226)(193,240)(194,239)(195,238)(196,215)(197,214)(198,213)(199,212)(200,211)(201,225)(202,224)(203,223)(204,222)(205,221)(206,220)(207,219)(208,218)(209,217)(210,216) );

G=PermutationGroup([(1,118,20,103),(2,119,21,104),(3,120,22,105),(4,106,23,91),(5,107,24,92),(6,108,25,93),(7,109,26,94),(8,110,27,95),(9,111,28,96),(10,112,29,97),(11,113,30,98),(12,114,16,99),(13,115,17,100),(14,116,18,101),(15,117,19,102),(31,87,57,72),(32,88,58,73),(33,89,59,74),(34,90,60,75),(35,76,46,61),(36,77,47,62),(37,78,48,63),(38,79,49,64),(39,80,50,65),(40,81,51,66),(41,82,52,67),(42,83,53,68),(43,84,54,69),(44,85,55,70),(45,86,56,71),(121,211,139,229),(122,212,140,230),(123,213,141,231),(124,214,142,232),(125,215,143,233),(126,216,144,234),(127,217,145,235),(128,218,146,236),(129,219,147,237),(130,220,148,238),(131,221,149,239),(132,222,150,240),(133,223,136,226),(134,224,137,227),(135,225,138,228),(151,189,174,200),(152,190,175,201),(153,191,176,202),(154,192,177,203),(155,193,178,204),(156,194,179,205),(157,195,180,206),(158,181,166,207),(159,182,167,208),(160,183,168,209),(161,184,169,210),(162,185,170,196),(163,186,171,197),(164,187,172,198),(165,188,173,199)], [(1,155,32,133),(2,156,33,134),(3,157,34,135),(4,158,35,121),(5,159,36,122),(6,160,37,123),(7,161,38,124),(8,162,39,125),(9,163,40,126),(10,164,41,127),(11,165,42,128),(12,151,43,129),(13,152,44,130),(14,153,45,131),(15,154,31,132),(16,174,54,147),(17,175,55,148),(18,176,56,149),(19,177,57,150),(20,178,58,136),(21,179,59,137),(22,180,60,138),(23,166,46,139),(24,167,47,140),(25,168,48,141),(26,169,49,142),(27,170,50,143),(28,171,51,144),(29,172,52,145),(30,173,53,146),(61,211,91,181),(62,212,92,182),(63,213,93,183),(64,214,94,184),(65,215,95,185),(66,216,96,186),(67,217,97,187),(68,218,98,188),(69,219,99,189),(70,220,100,190),(71,221,101,191),(72,222,102,192),(73,223,103,193),(74,224,104,194),(75,225,105,195),(76,229,106,207),(77,230,107,208),(78,231,108,209),(79,232,109,210),(80,233,110,196),(81,234,111,197),(82,235,112,198),(83,236,113,199),(84,237,114,200),(85,238,115,201),(86,239,116,202),(87,240,117,203),(88,226,118,204),(89,227,119,205),(90,228,120,206)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165),(166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195),(196,197,198,199,200,201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225),(226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,23),(17,22),(18,21),(19,20),(24,30),(25,29),(26,28),(31,32),(33,45),(34,44),(35,43),(36,42),(37,41),(38,40),(46,54),(47,53),(48,52),(49,51),(55,60),(56,59),(57,58),(61,99),(62,98),(63,97),(64,96),(65,95),(66,94),(67,93),(68,92),(69,91),(70,105),(71,104),(72,103),(73,102),(74,101),(75,100),(76,114),(77,113),(78,112),(79,111),(80,110),(81,109),(82,108),(83,107),(84,106),(85,120),(86,119),(87,118),(88,117),(89,116),(90,115),(121,147),(122,146),(123,145),(124,144),(125,143),(126,142),(127,141),(128,140),(129,139),(130,138),(131,137),(132,136),(133,150),(134,149),(135,148),(151,166),(152,180),(153,179),(154,178),(155,177),(156,176),(157,175),(158,174),(159,173),(160,172),(161,171),(162,170),(163,169),(164,168),(165,167),(181,237),(182,236),(183,235),(184,234),(185,233),(186,232),(187,231),(188,230),(189,229),(190,228),(191,227),(192,226),(193,240),(194,239),(195,238),(196,215),(197,214),(198,213),(199,212),(200,211),(201,225),(202,224),(203,223),(204,222),(205,221),(206,220),(207,219),(208,218),(209,217),(210,216)])

84 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E4F4G4H4I5A5B6A6B6C10A···10F12A···12F15A15B15C15D20A···20L30A···30L60A···60X
order1222234444444445566610···1012···121515151520···2030···3060···60
size111160222443030303060222222···24···422224···42···24···4

84 irreducible representations

dim1111112222222222444444
type++++++++++++-+-+-+
imageC1C2C2C2C2C2S3D5D6C4○D4D10D15C4○D12D30C4○D20D6011C2D42S3Q83S3D42D5Q82D5D42D15Q83D15
kernelC4⋊C4⋊D15C4×Dic15C30.4Q8C605C4D303C4C15×C4⋊C4C5×C4⋊C4C3×C4⋊C4C2×C20C30C2×C12C4⋊C4C10C2×C4C6C2C10C10C6C6C2C2
# reps111131123664412816112244

Matrix representation of C4⋊C4⋊D15 in GL8(𝔽61)

4456000000
2117000000
00100000
00010000
00001000
00000100
000000500
0000002911
,
110000000
011000000
006000000
000600000
000060000
000006000
000000265
0000004835
,
10000000
01000000
006010000
006000000
0000601700
0000444400
00000010
00000001
,
10000000
4260000000
006000000
006010000
0000601700
00000100
00000010
0000001460

G:=sub<GL(8,GF(61))| [44,21,0,0,0,0,0,0,56,17,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,50,29,0,0,0,0,0,0,0,11],[11,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,26,48,0,0,0,0,0,0,5,35],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,60,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,44,0,0,0,0,0,0,17,44,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,42,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,17,1,0,0,0,0,0,0,0,0,1,14,0,0,0,0,0,0,0,60] >;

C4⋊C4⋊D15 in GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes D_{15}
% in TeX

G:=Group("C4:C4:D15");
// GroupNames label

G:=SmallGroup(480,863);
// by ID

G=gap.SmallGroup(480,863);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,253,64,254,219,100,2693,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^15=d^2=1,b*a*b^-1=a^-1,a*c=c*a,d*a*d=a*b^2,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽