# Extensions 1→N→G→Q→1 with N=Q8×C30 and Q=C2

Direct product G=N×Q with N=Q8×C30 and Q=C2
dρLabelID
Q8×C2×C30480Q8xC2xC30480,1182

Semidirect products G=N:Q with N=Q8×C30 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C30)⋊1C2 = C2×Q82D15φ: C2/C1C2 ⊆ Out Q8×C30240(Q8xC30):1C2480,906
(Q8×C30)⋊2C2 = Q8.11D30φ: C2/C1C2 ⊆ Out Q8×C302404(Q8xC30):2C2480,907
(Q8×C30)⋊3C2 = D307Q8φ: C2/C1C2 ⊆ Out Q8×C30240(Q8xC30):3C2480,911
(Q8×C30)⋊4C2 = C60.23D4φ: C2/C1C2 ⊆ Out Q8×C30240(Q8xC30):4C2480,912
(Q8×C30)⋊5C2 = C2×Q8×D15φ: C2/C1C2 ⊆ Out Q8×C30240(Q8xC30):5C2480,1172
(Q8×C30)⋊6C2 = C2×Q83D15φ: C2/C1C2 ⊆ Out Q8×C30240(Q8xC30):6C2480,1173
(Q8×C30)⋊7C2 = Q8.15D30φ: C2/C1C2 ⊆ Out Q8×C302404(Q8xC30):7C2480,1174
(Q8×C30)⋊8C2 = C6×Q8⋊D5φ: C2/C1C2 ⊆ Out Q8×C30240(Q8xC30):8C2480,734
(Q8×C30)⋊9C2 = C3×C20.C23φ: C2/C1C2 ⊆ Out Q8×C302404(Q8xC30):9C2480,735
(Q8×C30)⋊10C2 = C3×D103Q8φ: C2/C1C2 ⊆ Out Q8×C30240(Q8xC30):10C2480,739
(Q8×C30)⋊11C2 = C3×C20.23D4φ: C2/C1C2 ⊆ Out Q8×C30240(Q8xC30):11C2480,740
(Q8×C30)⋊12C2 = C6×Q8×D5φ: C2/C1C2 ⊆ Out Q8×C30240(Q8xC30):12C2480,1142
(Q8×C30)⋊13C2 = C6×Q82D5φ: C2/C1C2 ⊆ Out Q8×C30240(Q8xC30):13C2480,1143
(Q8×C30)⋊14C2 = C3×Q8.10D10φ: C2/C1C2 ⊆ Out Q8×C302404(Q8xC30):14C2480,1144
(Q8×C30)⋊15C2 = C10×Q82S3φ: C2/C1C2 ⊆ Out Q8×C30240(Q8xC30):15C2480,820
(Q8×C30)⋊16C2 = C5×Q8.11D6φ: C2/C1C2 ⊆ Out Q8×C302404(Q8xC30):16C2480,821
(Q8×C30)⋊17C2 = C5×D63Q8φ: C2/C1C2 ⊆ Out Q8×C30240(Q8xC30):17C2480,825
(Q8×C30)⋊18C2 = C5×C12.23D4φ: C2/C1C2 ⊆ Out Q8×C30240(Q8xC30):18C2480,826
(Q8×C30)⋊19C2 = S3×Q8×C10φ: C2/C1C2 ⊆ Out Q8×C30240(Q8xC30):19C2480,1157
(Q8×C30)⋊20C2 = C10×Q83S3φ: C2/C1C2 ⊆ Out Q8×C30240(Q8xC30):20C2480,1158
(Q8×C30)⋊21C2 = C5×Q8.15D6φ: C2/C1C2 ⊆ Out Q8×C302404(Q8xC30):21C2480,1159
(Q8×C30)⋊22C2 = C15×C22⋊Q8φ: C2/C1C2 ⊆ Out Q8×C30240(Q8xC30):22C2480,927
(Q8×C30)⋊23C2 = C15×C4.4D4φ: C2/C1C2 ⊆ Out Q8×C30240(Q8xC30):23C2480,929
(Q8×C30)⋊24C2 = SD16×C30φ: C2/C1C2 ⊆ Out Q8×C30240(Q8xC30):24C2480,938
(Q8×C30)⋊25C2 = C15×C8.C22φ: C2/C1C2 ⊆ Out Q8×C302404(Q8xC30):25C2480,942
(Q8×C30)⋊26C2 = C15×2- 1+4φ: C2/C1C2 ⊆ Out Q8×C302404(Q8xC30):26C2480,1185
(Q8×C30)⋊27C2 = C4○D4×C30φ: trivial image240(Q8xC30):27C2480,1183

Non-split extensions G=N.Q with N=Q8×C30 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C30).1C2 = Q82Dic15φ: C2/C1C2 ⊆ Out Q8×C30480(Q8xC30).1C2480,195
(Q8×C30).2C2 = C60.10D4φ: C2/C1C2 ⊆ Out Q8×C302404(Q8xC30).2C2480,196
(Q8×C30).3C2 = C2×C157Q16φ: C2/C1C2 ⊆ Out Q8×C30480(Q8xC30).3C2480,908
(Q8×C30).4C2 = Dic154Q8φ: C2/C1C2 ⊆ Out Q8×C30480(Q8xC30).4C2480,909
(Q8×C30).5C2 = Q8×Dic15φ: C2/C1C2 ⊆ Out Q8×C30480(Q8xC30).5C2480,910
(Q8×C30).6C2 = C3×Q8⋊Dic5φ: C2/C1C2 ⊆ Out Q8×C30480(Q8xC30).6C2480,113
(Q8×C30).7C2 = C3×C20.10D4φ: C2/C1C2 ⊆ Out Q8×C302404(Q8xC30).7C2480,114
(Q8×C30).8C2 = C6×C5⋊Q16φ: C2/C1C2 ⊆ Out Q8×C30480(Q8xC30).8C2480,736
(Q8×C30).9C2 = C3×Dic5⋊Q8φ: C2/C1C2 ⊆ Out Q8×C30480(Q8xC30).9C2480,737
(Q8×C30).10C2 = C3×Q8×Dic5φ: C2/C1C2 ⊆ Out Q8×C30480(Q8xC30).10C2480,738
(Q8×C30).11C2 = C5×Q82Dic3φ: C2/C1C2 ⊆ Out Q8×C30480(Q8xC30).11C2480,154
(Q8×C30).12C2 = C5×C12.10D4φ: C2/C1C2 ⊆ Out Q8×C302404(Q8xC30).12C2480,155
(Q8×C30).13C2 = C10×C3⋊Q16φ: C2/C1C2 ⊆ Out Q8×C30480(Q8xC30).13C2480,822
(Q8×C30).14C2 = C5×Dic3⋊Q8φ: C2/C1C2 ⊆ Out Q8×C30480(Q8xC30).14C2480,823
(Q8×C30).15C2 = C5×Q8×Dic3φ: C2/C1C2 ⊆ Out Q8×C30480(Q8xC30).15C2480,824
(Q8×C30).16C2 = C15×C4.10D4φ: C2/C1C2 ⊆ Out Q8×C302404(Q8xC30).16C2480,204
(Q8×C30).17C2 = C15×Q8⋊C4φ: C2/C1C2 ⊆ Out Q8×C30480(Q8xC30).17C2480,206
(Q8×C30).18C2 = C15×C4⋊Q8φ: C2/C1C2 ⊆ Out Q8×C30480(Q8xC30).18C2480,933
(Q8×C30).19C2 = Q16×C30φ: C2/C1C2 ⊆ Out Q8×C30480(Q8xC30).19C2480,939
(Q8×C30).20C2 = Q8×C60φ: trivial image480(Q8xC30).20C2480,924

׿
×
𝔽