Extensions 1→N→G→Q→1 with N=Q8xC30 and Q=C2

Direct product G=NxQ with N=Q8xC30 and Q=C2
dρLabelID
Q8xC2xC30480Q8xC2xC30480,1182

Semidirect products G=N:Q with N=Q8xC30 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xC30):1C2 = C2xQ8:2D15φ: C2/C1C2 ⊆ Out Q8xC30240(Q8xC30):1C2480,906
(Q8xC30):2C2 = Q8.11D30φ: C2/C1C2 ⊆ Out Q8xC302404(Q8xC30):2C2480,907
(Q8xC30):3C2 = D30:7Q8φ: C2/C1C2 ⊆ Out Q8xC30240(Q8xC30):3C2480,911
(Q8xC30):4C2 = C60.23D4φ: C2/C1C2 ⊆ Out Q8xC30240(Q8xC30):4C2480,912
(Q8xC30):5C2 = C2xQ8xD15φ: C2/C1C2 ⊆ Out Q8xC30240(Q8xC30):5C2480,1172
(Q8xC30):6C2 = C2xQ8:3D15φ: C2/C1C2 ⊆ Out Q8xC30240(Q8xC30):6C2480,1173
(Q8xC30):7C2 = Q8.15D30φ: C2/C1C2 ⊆ Out Q8xC302404(Q8xC30):7C2480,1174
(Q8xC30):8C2 = C6xQ8:D5φ: C2/C1C2 ⊆ Out Q8xC30240(Q8xC30):8C2480,734
(Q8xC30):9C2 = C3xC20.C23φ: C2/C1C2 ⊆ Out Q8xC302404(Q8xC30):9C2480,735
(Q8xC30):10C2 = C3xD10:3Q8φ: C2/C1C2 ⊆ Out Q8xC30240(Q8xC30):10C2480,739
(Q8xC30):11C2 = C3xC20.23D4φ: C2/C1C2 ⊆ Out Q8xC30240(Q8xC30):11C2480,740
(Q8xC30):12C2 = C6xQ8xD5φ: C2/C1C2 ⊆ Out Q8xC30240(Q8xC30):12C2480,1142
(Q8xC30):13C2 = C6xQ8:2D5φ: C2/C1C2 ⊆ Out Q8xC30240(Q8xC30):13C2480,1143
(Q8xC30):14C2 = C3xQ8.10D10φ: C2/C1C2 ⊆ Out Q8xC302404(Q8xC30):14C2480,1144
(Q8xC30):15C2 = C10xQ8:2S3φ: C2/C1C2 ⊆ Out Q8xC30240(Q8xC30):15C2480,820
(Q8xC30):16C2 = C5xQ8.11D6φ: C2/C1C2 ⊆ Out Q8xC302404(Q8xC30):16C2480,821
(Q8xC30):17C2 = C5xD6:3Q8φ: C2/C1C2 ⊆ Out Q8xC30240(Q8xC30):17C2480,825
(Q8xC30):18C2 = C5xC12.23D4φ: C2/C1C2 ⊆ Out Q8xC30240(Q8xC30):18C2480,826
(Q8xC30):19C2 = S3xQ8xC10φ: C2/C1C2 ⊆ Out Q8xC30240(Q8xC30):19C2480,1157
(Q8xC30):20C2 = C10xQ8:3S3φ: C2/C1C2 ⊆ Out Q8xC30240(Q8xC30):20C2480,1158
(Q8xC30):21C2 = C5xQ8.15D6φ: C2/C1C2 ⊆ Out Q8xC302404(Q8xC30):21C2480,1159
(Q8xC30):22C2 = C15xC22:Q8φ: C2/C1C2 ⊆ Out Q8xC30240(Q8xC30):22C2480,927
(Q8xC30):23C2 = C15xC4.4D4φ: C2/C1C2 ⊆ Out Q8xC30240(Q8xC30):23C2480,929
(Q8xC30):24C2 = SD16xC30φ: C2/C1C2 ⊆ Out Q8xC30240(Q8xC30):24C2480,938
(Q8xC30):25C2 = C15xC8.C22φ: C2/C1C2 ⊆ Out Q8xC302404(Q8xC30):25C2480,942
(Q8xC30):26C2 = C15x2- 1+4φ: C2/C1C2 ⊆ Out Q8xC302404(Q8xC30):26C2480,1185
(Q8xC30):27C2 = C4oD4xC30φ: trivial image240(Q8xC30):27C2480,1183

Non-split extensions G=N.Q with N=Q8xC30 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xC30).1C2 = Q8:2Dic15φ: C2/C1C2 ⊆ Out Q8xC30480(Q8xC30).1C2480,195
(Q8xC30).2C2 = C60.10D4φ: C2/C1C2 ⊆ Out Q8xC302404(Q8xC30).2C2480,196
(Q8xC30).3C2 = C2xC15:7Q16φ: C2/C1C2 ⊆ Out Q8xC30480(Q8xC30).3C2480,908
(Q8xC30).4C2 = Dic15:4Q8φ: C2/C1C2 ⊆ Out Q8xC30480(Q8xC30).4C2480,909
(Q8xC30).5C2 = Q8xDic15φ: C2/C1C2 ⊆ Out Q8xC30480(Q8xC30).5C2480,910
(Q8xC30).6C2 = C3xQ8:Dic5φ: C2/C1C2 ⊆ Out Q8xC30480(Q8xC30).6C2480,113
(Q8xC30).7C2 = C3xC20.10D4φ: C2/C1C2 ⊆ Out Q8xC302404(Q8xC30).7C2480,114
(Q8xC30).8C2 = C6xC5:Q16φ: C2/C1C2 ⊆ Out Q8xC30480(Q8xC30).8C2480,736
(Q8xC30).9C2 = C3xDic5:Q8φ: C2/C1C2 ⊆ Out Q8xC30480(Q8xC30).9C2480,737
(Q8xC30).10C2 = C3xQ8xDic5φ: C2/C1C2 ⊆ Out Q8xC30480(Q8xC30).10C2480,738
(Q8xC30).11C2 = C5xQ8:2Dic3φ: C2/C1C2 ⊆ Out Q8xC30480(Q8xC30).11C2480,154
(Q8xC30).12C2 = C5xC12.10D4φ: C2/C1C2 ⊆ Out Q8xC302404(Q8xC30).12C2480,155
(Q8xC30).13C2 = C10xC3:Q16φ: C2/C1C2 ⊆ Out Q8xC30480(Q8xC30).13C2480,822
(Q8xC30).14C2 = C5xDic3:Q8φ: C2/C1C2 ⊆ Out Q8xC30480(Q8xC30).14C2480,823
(Q8xC30).15C2 = C5xQ8xDic3φ: C2/C1C2 ⊆ Out Q8xC30480(Q8xC30).15C2480,824
(Q8xC30).16C2 = C15xC4.10D4φ: C2/C1C2 ⊆ Out Q8xC302404(Q8xC30).16C2480,204
(Q8xC30).17C2 = C15xQ8:C4φ: C2/C1C2 ⊆ Out Q8xC30480(Q8xC30).17C2480,206
(Q8xC30).18C2 = C15xC4:Q8φ: C2/C1C2 ⊆ Out Q8xC30480(Q8xC30).18C2480,933
(Q8xC30).19C2 = Q16xC30φ: C2/C1C2 ⊆ Out Q8xC30480(Q8xC30).19C2480,939
(Q8xC30).20C2 = Q8xC60φ: trivial image480(Q8xC30).20C2480,924

׿
x
:
Z
F
o
wr
Q
<