direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: Q8×C30, C30.59C23, C60.80C22, C4.4(C2×C30), (C2×C20).9C6, (C2×C4).3C30, (C2×C60).21C2, (C2×C12).9C10, C20.20(C2×C6), C12.20(C2×C10), C22.4(C2×C30), C2.2(C22×C30), (C2×C30).54C22, C10.12(C22×C6), C6.12(C22×C10), (C2×C10).15(C2×C6), (C2×C6).15(C2×C10), SmallGroup(240,187)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Q8×C30
G = < a,b,c | a30=b4=1, c2=b2, ab=ba, ac=ca, cbc-1=b-1 >
Subgroups: 76, all normal (16 characteristic)
C1, C2, C2, C3, C4, C22, C5, C6, C6, C2×C4, Q8, C10, C10, C12, C2×C6, C15, C2×Q8, C20, C2×C10, C2×C12, C3×Q8, C30, C30, C2×C20, C5×Q8, C6×Q8, C60, C2×C30, Q8×C10, C2×C60, Q8×C15, Q8×C30
Quotients: C1, C2, C3, C22, C5, C6, Q8, C23, C10, C2×C6, C15, C2×Q8, C2×C10, C3×Q8, C22×C6, C30, C5×Q8, C22×C10, C6×Q8, C2×C30, Q8×C10, Q8×C15, C22×C30, Q8×C30
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 170 238 138)(2 171 239 139)(3 172 240 140)(4 173 211 141)(5 174 212 142)(6 175 213 143)(7 176 214 144)(8 177 215 145)(9 178 216 146)(10 179 217 147)(11 180 218 148)(12 151 219 149)(13 152 220 150)(14 153 221 121)(15 154 222 122)(16 155 223 123)(17 156 224 124)(18 157 225 125)(19 158 226 126)(20 159 227 127)(21 160 228 128)(22 161 229 129)(23 162 230 130)(24 163 231 131)(25 164 232 132)(26 165 233 133)(27 166 234 134)(28 167 235 135)(29 168 236 136)(30 169 237 137)(31 72 117 199)(32 73 118 200)(33 74 119 201)(34 75 120 202)(35 76 91 203)(36 77 92 204)(37 78 93 205)(38 79 94 206)(39 80 95 207)(40 81 96 208)(41 82 97 209)(42 83 98 210)(43 84 99 181)(44 85 100 182)(45 86 101 183)(46 87 102 184)(47 88 103 185)(48 89 104 186)(49 90 105 187)(50 61 106 188)(51 62 107 189)(52 63 108 190)(53 64 109 191)(54 65 110 192)(55 66 111 193)(56 67 112 194)(57 68 113 195)(58 69 114 196)(59 70 115 197)(60 71 116 198)
(1 114 238 58)(2 115 239 59)(3 116 240 60)(4 117 211 31)(5 118 212 32)(6 119 213 33)(7 120 214 34)(8 91 215 35)(9 92 216 36)(10 93 217 37)(11 94 218 38)(12 95 219 39)(13 96 220 40)(14 97 221 41)(15 98 222 42)(16 99 223 43)(17 100 224 44)(18 101 225 45)(19 102 226 46)(20 103 227 47)(21 104 228 48)(22 105 229 49)(23 106 230 50)(24 107 231 51)(25 108 232 52)(26 109 233 53)(27 110 234 54)(28 111 235 55)(29 112 236 56)(30 113 237 57)(61 130 188 162)(62 131 189 163)(63 132 190 164)(64 133 191 165)(65 134 192 166)(66 135 193 167)(67 136 194 168)(68 137 195 169)(69 138 196 170)(70 139 197 171)(71 140 198 172)(72 141 199 173)(73 142 200 174)(74 143 201 175)(75 144 202 176)(76 145 203 177)(77 146 204 178)(78 147 205 179)(79 148 206 180)(80 149 207 151)(81 150 208 152)(82 121 209 153)(83 122 210 154)(84 123 181 155)(85 124 182 156)(86 125 183 157)(87 126 184 158)(88 127 185 159)(89 128 186 160)(90 129 187 161)
G:=sub<Sym(240)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,170,238,138)(2,171,239,139)(3,172,240,140)(4,173,211,141)(5,174,212,142)(6,175,213,143)(7,176,214,144)(8,177,215,145)(9,178,216,146)(10,179,217,147)(11,180,218,148)(12,151,219,149)(13,152,220,150)(14,153,221,121)(15,154,222,122)(16,155,223,123)(17,156,224,124)(18,157,225,125)(19,158,226,126)(20,159,227,127)(21,160,228,128)(22,161,229,129)(23,162,230,130)(24,163,231,131)(25,164,232,132)(26,165,233,133)(27,166,234,134)(28,167,235,135)(29,168,236,136)(30,169,237,137)(31,72,117,199)(32,73,118,200)(33,74,119,201)(34,75,120,202)(35,76,91,203)(36,77,92,204)(37,78,93,205)(38,79,94,206)(39,80,95,207)(40,81,96,208)(41,82,97,209)(42,83,98,210)(43,84,99,181)(44,85,100,182)(45,86,101,183)(46,87,102,184)(47,88,103,185)(48,89,104,186)(49,90,105,187)(50,61,106,188)(51,62,107,189)(52,63,108,190)(53,64,109,191)(54,65,110,192)(55,66,111,193)(56,67,112,194)(57,68,113,195)(58,69,114,196)(59,70,115,197)(60,71,116,198), (1,114,238,58)(2,115,239,59)(3,116,240,60)(4,117,211,31)(5,118,212,32)(6,119,213,33)(7,120,214,34)(8,91,215,35)(9,92,216,36)(10,93,217,37)(11,94,218,38)(12,95,219,39)(13,96,220,40)(14,97,221,41)(15,98,222,42)(16,99,223,43)(17,100,224,44)(18,101,225,45)(19,102,226,46)(20,103,227,47)(21,104,228,48)(22,105,229,49)(23,106,230,50)(24,107,231,51)(25,108,232,52)(26,109,233,53)(27,110,234,54)(28,111,235,55)(29,112,236,56)(30,113,237,57)(61,130,188,162)(62,131,189,163)(63,132,190,164)(64,133,191,165)(65,134,192,166)(66,135,193,167)(67,136,194,168)(68,137,195,169)(69,138,196,170)(70,139,197,171)(71,140,198,172)(72,141,199,173)(73,142,200,174)(74,143,201,175)(75,144,202,176)(76,145,203,177)(77,146,204,178)(78,147,205,179)(79,148,206,180)(80,149,207,151)(81,150,208,152)(82,121,209,153)(83,122,210,154)(84,123,181,155)(85,124,182,156)(86,125,183,157)(87,126,184,158)(88,127,185,159)(89,128,186,160)(90,129,187,161)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,170,238,138)(2,171,239,139)(3,172,240,140)(4,173,211,141)(5,174,212,142)(6,175,213,143)(7,176,214,144)(8,177,215,145)(9,178,216,146)(10,179,217,147)(11,180,218,148)(12,151,219,149)(13,152,220,150)(14,153,221,121)(15,154,222,122)(16,155,223,123)(17,156,224,124)(18,157,225,125)(19,158,226,126)(20,159,227,127)(21,160,228,128)(22,161,229,129)(23,162,230,130)(24,163,231,131)(25,164,232,132)(26,165,233,133)(27,166,234,134)(28,167,235,135)(29,168,236,136)(30,169,237,137)(31,72,117,199)(32,73,118,200)(33,74,119,201)(34,75,120,202)(35,76,91,203)(36,77,92,204)(37,78,93,205)(38,79,94,206)(39,80,95,207)(40,81,96,208)(41,82,97,209)(42,83,98,210)(43,84,99,181)(44,85,100,182)(45,86,101,183)(46,87,102,184)(47,88,103,185)(48,89,104,186)(49,90,105,187)(50,61,106,188)(51,62,107,189)(52,63,108,190)(53,64,109,191)(54,65,110,192)(55,66,111,193)(56,67,112,194)(57,68,113,195)(58,69,114,196)(59,70,115,197)(60,71,116,198), (1,114,238,58)(2,115,239,59)(3,116,240,60)(4,117,211,31)(5,118,212,32)(6,119,213,33)(7,120,214,34)(8,91,215,35)(9,92,216,36)(10,93,217,37)(11,94,218,38)(12,95,219,39)(13,96,220,40)(14,97,221,41)(15,98,222,42)(16,99,223,43)(17,100,224,44)(18,101,225,45)(19,102,226,46)(20,103,227,47)(21,104,228,48)(22,105,229,49)(23,106,230,50)(24,107,231,51)(25,108,232,52)(26,109,233,53)(27,110,234,54)(28,111,235,55)(29,112,236,56)(30,113,237,57)(61,130,188,162)(62,131,189,163)(63,132,190,164)(64,133,191,165)(65,134,192,166)(66,135,193,167)(67,136,194,168)(68,137,195,169)(69,138,196,170)(70,139,197,171)(71,140,198,172)(72,141,199,173)(73,142,200,174)(74,143,201,175)(75,144,202,176)(76,145,203,177)(77,146,204,178)(78,147,205,179)(79,148,206,180)(80,149,207,151)(81,150,208,152)(82,121,209,153)(83,122,210,154)(84,123,181,155)(85,124,182,156)(86,125,183,157)(87,126,184,158)(88,127,185,159)(89,128,186,160)(90,129,187,161) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,170,238,138),(2,171,239,139),(3,172,240,140),(4,173,211,141),(5,174,212,142),(6,175,213,143),(7,176,214,144),(8,177,215,145),(9,178,216,146),(10,179,217,147),(11,180,218,148),(12,151,219,149),(13,152,220,150),(14,153,221,121),(15,154,222,122),(16,155,223,123),(17,156,224,124),(18,157,225,125),(19,158,226,126),(20,159,227,127),(21,160,228,128),(22,161,229,129),(23,162,230,130),(24,163,231,131),(25,164,232,132),(26,165,233,133),(27,166,234,134),(28,167,235,135),(29,168,236,136),(30,169,237,137),(31,72,117,199),(32,73,118,200),(33,74,119,201),(34,75,120,202),(35,76,91,203),(36,77,92,204),(37,78,93,205),(38,79,94,206),(39,80,95,207),(40,81,96,208),(41,82,97,209),(42,83,98,210),(43,84,99,181),(44,85,100,182),(45,86,101,183),(46,87,102,184),(47,88,103,185),(48,89,104,186),(49,90,105,187),(50,61,106,188),(51,62,107,189),(52,63,108,190),(53,64,109,191),(54,65,110,192),(55,66,111,193),(56,67,112,194),(57,68,113,195),(58,69,114,196),(59,70,115,197),(60,71,116,198)], [(1,114,238,58),(2,115,239,59),(3,116,240,60),(4,117,211,31),(5,118,212,32),(6,119,213,33),(7,120,214,34),(8,91,215,35),(9,92,216,36),(10,93,217,37),(11,94,218,38),(12,95,219,39),(13,96,220,40),(14,97,221,41),(15,98,222,42),(16,99,223,43),(17,100,224,44),(18,101,225,45),(19,102,226,46),(20,103,227,47),(21,104,228,48),(22,105,229,49),(23,106,230,50),(24,107,231,51),(25,108,232,52),(26,109,233,53),(27,110,234,54),(28,111,235,55),(29,112,236,56),(30,113,237,57),(61,130,188,162),(62,131,189,163),(63,132,190,164),(64,133,191,165),(65,134,192,166),(66,135,193,167),(67,136,194,168),(68,137,195,169),(69,138,196,170),(70,139,197,171),(71,140,198,172),(72,141,199,173),(73,142,200,174),(74,143,201,175),(75,144,202,176),(76,145,203,177),(77,146,204,178),(78,147,205,179),(79,148,206,180),(80,149,207,151),(81,150,208,152),(82,121,209,153),(83,122,210,154),(84,123,181,155),(85,124,182,156),(86,125,183,157),(87,126,184,158),(88,127,185,159),(89,128,186,160),(90,129,187,161)]])
Q8×C30 is a maximal subgroup of
Q8⋊2Dic15 C60.10D4 Q8.11D30 Dic15⋊4Q8 D30⋊7Q8 C60.23D4 Q8.15D30
150 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | ··· | 4F | 5A | 5B | 5C | 5D | 6A | ··· | 6F | 10A | ··· | 10L | 12A | ··· | 12L | 15A | ··· | 15H | 20A | ··· | 20X | 30A | ··· | 30X | 60A | ··· | 60AV |
order | 1 | 2 | 2 | 2 | 3 | 3 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 6 | ··· | 6 | 10 | ··· | 10 | 12 | ··· | 12 | 15 | ··· | 15 | 20 | ··· | 20 | 30 | ··· | 30 | 60 | ··· | 60 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 |
150 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | - | ||||||||||||
image | C1 | C2 | C2 | C3 | C5 | C6 | C6 | C10 | C10 | C15 | C30 | C30 | Q8 | C3×Q8 | C5×Q8 | Q8×C15 |
kernel | Q8×C30 | C2×C60 | Q8×C15 | Q8×C10 | C6×Q8 | C2×C20 | C5×Q8 | C2×C12 | C3×Q8 | C2×Q8 | C2×C4 | Q8 | C30 | C10 | C6 | C2 |
# reps | 1 | 3 | 4 | 2 | 4 | 6 | 8 | 12 | 16 | 8 | 24 | 32 | 2 | 4 | 8 | 16 |
Matrix representation of Q8×C30 ►in GL3(𝔽61) generated by
14 | 0 | 0 |
0 | 3 | 0 |
0 | 0 | 3 |
60 | 0 | 0 |
0 | 0 | 1 |
0 | 60 | 0 |
1 | 0 | 0 |
0 | 17 | 25 |
0 | 25 | 44 |
G:=sub<GL(3,GF(61))| [14,0,0,0,3,0,0,0,3],[60,0,0,0,0,60,0,1,0],[1,0,0,0,17,25,0,25,44] >;
Q8×C30 in GAP, Magma, Sage, TeX
Q_8\times C_{30}
% in TeX
G:=Group("Q8xC30");
// GroupNames label
G:=SmallGroup(240,187);
// by ID
G=gap.SmallGroup(240,187);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-5,-2,720,1465,727]);
// Polycyclic
G:=Group<a,b,c|a^30=b^4=1,c^2=b^2,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations