Extensions 1→N→G→Q→1 with N=C15×Q16 and Q=C2

Direct product G=N×Q with N=C15×Q16 and Q=C2
dρLabelID
Q16×C30480Q16xC30480,939

Semidirect products G=N:Q with N=C15×Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C15×Q16)⋊1C2 = C8.6D30φ: C2/C1C2 ⊆ Out C15×Q162404+(C15xQ16):1C2480,188
(C15×Q16)⋊2C2 = Q16×D15φ: C2/C1C2 ⊆ Out C15×Q162404-(C15xQ16):2C2480,882
(C15×Q16)⋊3C2 = D1208C2φ: C2/C1C2 ⊆ Out C15×Q162404+(C15xQ16):3C2480,884
(C15×Q16)⋊4C2 = Q16⋊D15φ: C2/C1C2 ⊆ Out C15×Q162404(C15xQ16):4C2480,883
(C15×Q16)⋊5C2 = C3×C5⋊SD32φ: C2/C1C2 ⊆ Out C15×Q162404(C15xQ16):5C2480,106
(C15×Q16)⋊6C2 = C3×D5×Q16φ: C2/C1C2 ⊆ Out C15×Q162404(C15xQ16):6C2480,710
(C15×Q16)⋊7C2 = C3×Q8.D10φ: C2/C1C2 ⊆ Out C15×Q162404(C15xQ16):7C2480,712
(C15×Q16)⋊8C2 = C5×C8.6D6φ: C2/C1C2 ⊆ Out C15×Q162404(C15xQ16):8C2480,147
(C15×Q16)⋊9C2 = C5×S3×Q16φ: C2/C1C2 ⊆ Out C15×Q162404(C15xQ16):9C2480,796
(C15×Q16)⋊10C2 = C5×D24⋊C2φ: C2/C1C2 ⊆ Out C15×Q162404(C15xQ16):10C2480,798
(C15×Q16)⋊11C2 = C3×Q16⋊D5φ: C2/C1C2 ⊆ Out C15×Q162404(C15xQ16):11C2480,711
(C15×Q16)⋊12C2 = C5×Q16⋊S3φ: C2/C1C2 ⊆ Out C15×Q162404(C15xQ16):12C2480,797
(C15×Q16)⋊13C2 = C15×SD32φ: C2/C1C2 ⊆ Out C15×Q162402(C15xQ16):13C2480,215
(C15×Q16)⋊14C2 = C15×C8.C22φ: C2/C1C2 ⊆ Out C15×Q162404(C15xQ16):14C2480,942
(C15×Q16)⋊15C2 = C15×C4○D8φ: trivial image2402(C15xQ16):15C2480,940

Non-split extensions G=N.Q with N=C15×Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C15×Q16).1C2 = C157Q32φ: C2/C1C2 ⊆ Out C15×Q164804-(C15xQ16).1C2480,189
(C15×Q16).2C2 = C3×C5⋊Q32φ: C2/C1C2 ⊆ Out C15×Q164804(C15xQ16).2C2480,107
(C15×Q16).3C2 = C5×C3⋊Q32φ: C2/C1C2 ⊆ Out C15×Q164804(C15xQ16).3C2480,148
(C15×Q16).4C2 = C15×Q32φ: C2/C1C2 ⊆ Out C15×Q164802(C15xQ16).4C2480,216

׿
×
𝔽