metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D120⋊8C2, Q16⋊3D15, C8.10D30, C40.24D6, D30.19D4, C24.24D10, Q8.10D30, C60.73C23, C120.15C22, Dic15.51D4, D60.24C22, (C8×D15)⋊3C2, (C5×Q16)⋊3S3, (C3×Q16)⋊3D5, C15⋊34(C4○D8), (C15×Q16)⋊3C2, C2.24(D4×D15), C6.117(D4×D5), (C5×Q8).34D6, C5⋊4(D24⋊C2), C3⋊4(Q8.D10), C30.324(C2×D4), C10.119(S3×D4), (C3×Q8).17D10, Q8⋊3D15⋊10C2, Q8⋊2D15⋊12C2, C4.10(C22×D15), C20.111(C22×S3), C15⋊3C8.34C22, (C4×D15).47C22, C12.111(C22×D5), (Q8×C15).26C22, SmallGroup(480,884)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D120⋊8C2
G = < a,b,c | a120=b2=c2=1, bab=a-1, cac=a89, cbc=a28b >
Subgroups: 884 in 124 conjugacy classes, 41 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C8, C8, C2×C4, D4, Q8, D5, C10, Dic3, C12, C12, D6, C15, C2×C8, D8, SD16, Q16, C4○D4, Dic5, C20, C20, D10, C3⋊C8, C24, C4×S3, D12, C3×Q8, D15, C30, C4○D8, C5⋊2C8, C40, C4×D5, D20, C5×Q8, S3×C8, D24, Q8⋊2S3, C3×Q16, Q8⋊3S3, Dic15, C60, C60, D30, D30, C8×D5, D40, Q8⋊D5, C5×Q16, Q8⋊2D5, D24⋊C2, C15⋊3C8, C120, C4×D15, C4×D15, D60, D60, Q8×C15, Q8.D10, C8×D15, D120, Q8⋊2D15, C15×Q16, Q8⋊3D15, D120⋊8C2
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, C22×S3, D15, C4○D8, C22×D5, S3×D4, D30, D4×D5, D24⋊C2, C22×D15, Q8.D10, D4×D15, D120⋊8C2
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 153)(2 152)(3 151)(4 150)(5 149)(6 148)(7 147)(8 146)(9 145)(10 144)(11 143)(12 142)(13 141)(14 140)(15 139)(16 138)(17 137)(18 136)(19 135)(20 134)(21 133)(22 132)(23 131)(24 130)(25 129)(26 128)(27 127)(28 126)(29 125)(30 124)(31 123)(32 122)(33 121)(34 240)(35 239)(36 238)(37 237)(38 236)(39 235)(40 234)(41 233)(42 232)(43 231)(44 230)(45 229)(46 228)(47 227)(48 226)(49 225)(50 224)(51 223)(52 222)(53 221)(54 220)(55 219)(56 218)(57 217)(58 216)(59 215)(60 214)(61 213)(62 212)(63 211)(64 210)(65 209)(66 208)(67 207)(68 206)(69 205)(70 204)(71 203)(72 202)(73 201)(74 200)(75 199)(76 198)(77 197)(78 196)(79 195)(80 194)(81 193)(82 192)(83 191)(84 190)(85 189)(86 188)(87 187)(88 186)(89 185)(90 184)(91 183)(92 182)(93 181)(94 180)(95 179)(96 178)(97 177)(98 176)(99 175)(100 174)(101 173)(102 172)(103 171)(104 170)(105 169)(106 168)(107 167)(108 166)(109 165)(110 164)(111 163)(112 162)(113 161)(114 160)(115 159)(116 158)(117 157)(118 156)(119 155)(120 154)
(2 90)(3 59)(4 28)(5 117)(6 86)(7 55)(8 24)(9 113)(10 82)(11 51)(12 20)(13 109)(14 78)(15 47)(17 105)(18 74)(19 43)(21 101)(22 70)(23 39)(25 97)(26 66)(27 35)(29 93)(30 62)(32 120)(33 89)(34 58)(36 116)(37 85)(38 54)(40 112)(41 81)(42 50)(44 108)(45 77)(48 104)(49 73)(52 100)(53 69)(56 96)(57 65)(60 92)(63 119)(64 88)(67 115)(68 84)(71 111)(72 80)(75 107)(79 103)(83 99)(87 95)(94 118)(98 114)(102 110)(121 157)(122 126)(123 215)(124 184)(125 153)(127 211)(128 180)(129 149)(130 238)(131 207)(132 176)(133 145)(134 234)(135 203)(136 172)(137 141)(138 230)(139 199)(140 168)(142 226)(143 195)(144 164)(146 222)(147 191)(148 160)(150 218)(151 187)(152 156)(154 214)(155 183)(158 210)(159 179)(161 237)(162 206)(163 175)(165 233)(166 202)(167 171)(169 229)(170 198)(173 225)(174 194)(177 221)(178 190)(181 217)(182 186)(185 213)(188 240)(189 209)(192 236)(193 205)(196 232)(197 201)(200 228)(204 224)(208 220)(212 216)(219 239)(223 235)(227 231)
G:=sub<Sym(240)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,153)(2,152)(3,151)(4,150)(5,149)(6,148)(7,147)(8,146)(9,145)(10,144)(11,143)(12,142)(13,141)(14,140)(15,139)(16,138)(17,137)(18,136)(19,135)(20,134)(21,133)(22,132)(23,131)(24,130)(25,129)(26,128)(27,127)(28,126)(29,125)(30,124)(31,123)(32,122)(33,121)(34,240)(35,239)(36,238)(37,237)(38,236)(39,235)(40,234)(41,233)(42,232)(43,231)(44,230)(45,229)(46,228)(47,227)(48,226)(49,225)(50,224)(51,223)(52,222)(53,221)(54,220)(55,219)(56,218)(57,217)(58,216)(59,215)(60,214)(61,213)(62,212)(63,211)(64,210)(65,209)(66,208)(67,207)(68,206)(69,205)(70,204)(71,203)(72,202)(73,201)(74,200)(75,199)(76,198)(77,197)(78,196)(79,195)(80,194)(81,193)(82,192)(83,191)(84,190)(85,189)(86,188)(87,187)(88,186)(89,185)(90,184)(91,183)(92,182)(93,181)(94,180)(95,179)(96,178)(97,177)(98,176)(99,175)(100,174)(101,173)(102,172)(103,171)(104,170)(105,169)(106,168)(107,167)(108,166)(109,165)(110,164)(111,163)(112,162)(113,161)(114,160)(115,159)(116,158)(117,157)(118,156)(119,155)(120,154), (2,90)(3,59)(4,28)(5,117)(6,86)(7,55)(8,24)(9,113)(10,82)(11,51)(12,20)(13,109)(14,78)(15,47)(17,105)(18,74)(19,43)(21,101)(22,70)(23,39)(25,97)(26,66)(27,35)(29,93)(30,62)(32,120)(33,89)(34,58)(36,116)(37,85)(38,54)(40,112)(41,81)(42,50)(44,108)(45,77)(48,104)(49,73)(52,100)(53,69)(56,96)(57,65)(60,92)(63,119)(64,88)(67,115)(68,84)(71,111)(72,80)(75,107)(79,103)(83,99)(87,95)(94,118)(98,114)(102,110)(121,157)(122,126)(123,215)(124,184)(125,153)(127,211)(128,180)(129,149)(130,238)(131,207)(132,176)(133,145)(134,234)(135,203)(136,172)(137,141)(138,230)(139,199)(140,168)(142,226)(143,195)(144,164)(146,222)(147,191)(148,160)(150,218)(151,187)(152,156)(154,214)(155,183)(158,210)(159,179)(161,237)(162,206)(163,175)(165,233)(166,202)(167,171)(169,229)(170,198)(173,225)(174,194)(177,221)(178,190)(181,217)(182,186)(185,213)(188,240)(189,209)(192,236)(193,205)(196,232)(197,201)(200,228)(204,224)(208,220)(212,216)(219,239)(223,235)(227,231)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,153)(2,152)(3,151)(4,150)(5,149)(6,148)(7,147)(8,146)(9,145)(10,144)(11,143)(12,142)(13,141)(14,140)(15,139)(16,138)(17,137)(18,136)(19,135)(20,134)(21,133)(22,132)(23,131)(24,130)(25,129)(26,128)(27,127)(28,126)(29,125)(30,124)(31,123)(32,122)(33,121)(34,240)(35,239)(36,238)(37,237)(38,236)(39,235)(40,234)(41,233)(42,232)(43,231)(44,230)(45,229)(46,228)(47,227)(48,226)(49,225)(50,224)(51,223)(52,222)(53,221)(54,220)(55,219)(56,218)(57,217)(58,216)(59,215)(60,214)(61,213)(62,212)(63,211)(64,210)(65,209)(66,208)(67,207)(68,206)(69,205)(70,204)(71,203)(72,202)(73,201)(74,200)(75,199)(76,198)(77,197)(78,196)(79,195)(80,194)(81,193)(82,192)(83,191)(84,190)(85,189)(86,188)(87,187)(88,186)(89,185)(90,184)(91,183)(92,182)(93,181)(94,180)(95,179)(96,178)(97,177)(98,176)(99,175)(100,174)(101,173)(102,172)(103,171)(104,170)(105,169)(106,168)(107,167)(108,166)(109,165)(110,164)(111,163)(112,162)(113,161)(114,160)(115,159)(116,158)(117,157)(118,156)(119,155)(120,154), (2,90)(3,59)(4,28)(5,117)(6,86)(7,55)(8,24)(9,113)(10,82)(11,51)(12,20)(13,109)(14,78)(15,47)(17,105)(18,74)(19,43)(21,101)(22,70)(23,39)(25,97)(26,66)(27,35)(29,93)(30,62)(32,120)(33,89)(34,58)(36,116)(37,85)(38,54)(40,112)(41,81)(42,50)(44,108)(45,77)(48,104)(49,73)(52,100)(53,69)(56,96)(57,65)(60,92)(63,119)(64,88)(67,115)(68,84)(71,111)(72,80)(75,107)(79,103)(83,99)(87,95)(94,118)(98,114)(102,110)(121,157)(122,126)(123,215)(124,184)(125,153)(127,211)(128,180)(129,149)(130,238)(131,207)(132,176)(133,145)(134,234)(135,203)(136,172)(137,141)(138,230)(139,199)(140,168)(142,226)(143,195)(144,164)(146,222)(147,191)(148,160)(150,218)(151,187)(152,156)(154,214)(155,183)(158,210)(159,179)(161,237)(162,206)(163,175)(165,233)(166,202)(167,171)(169,229)(170,198)(173,225)(174,194)(177,221)(178,190)(181,217)(182,186)(185,213)(188,240)(189,209)(192,236)(193,205)(196,232)(197,201)(200,228)(204,224)(208,220)(212,216)(219,239)(223,235)(227,231) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,153),(2,152),(3,151),(4,150),(5,149),(6,148),(7,147),(8,146),(9,145),(10,144),(11,143),(12,142),(13,141),(14,140),(15,139),(16,138),(17,137),(18,136),(19,135),(20,134),(21,133),(22,132),(23,131),(24,130),(25,129),(26,128),(27,127),(28,126),(29,125),(30,124),(31,123),(32,122),(33,121),(34,240),(35,239),(36,238),(37,237),(38,236),(39,235),(40,234),(41,233),(42,232),(43,231),(44,230),(45,229),(46,228),(47,227),(48,226),(49,225),(50,224),(51,223),(52,222),(53,221),(54,220),(55,219),(56,218),(57,217),(58,216),(59,215),(60,214),(61,213),(62,212),(63,211),(64,210),(65,209),(66,208),(67,207),(68,206),(69,205),(70,204),(71,203),(72,202),(73,201),(74,200),(75,199),(76,198),(77,197),(78,196),(79,195),(80,194),(81,193),(82,192),(83,191),(84,190),(85,189),(86,188),(87,187),(88,186),(89,185),(90,184),(91,183),(92,182),(93,181),(94,180),(95,179),(96,178),(97,177),(98,176),(99,175),(100,174),(101,173),(102,172),(103,171),(104,170),(105,169),(106,168),(107,167),(108,166),(109,165),(110,164),(111,163),(112,162),(113,161),(114,160),(115,159),(116,158),(117,157),(118,156),(119,155),(120,154)], [(2,90),(3,59),(4,28),(5,117),(6,86),(7,55),(8,24),(9,113),(10,82),(11,51),(12,20),(13,109),(14,78),(15,47),(17,105),(18,74),(19,43),(21,101),(22,70),(23,39),(25,97),(26,66),(27,35),(29,93),(30,62),(32,120),(33,89),(34,58),(36,116),(37,85),(38,54),(40,112),(41,81),(42,50),(44,108),(45,77),(48,104),(49,73),(52,100),(53,69),(56,96),(57,65),(60,92),(63,119),(64,88),(67,115),(68,84),(71,111),(72,80),(75,107),(79,103),(83,99),(87,95),(94,118),(98,114),(102,110),(121,157),(122,126),(123,215),(124,184),(125,153),(127,211),(128,180),(129,149),(130,238),(131,207),(132,176),(133,145),(134,234),(135,203),(136,172),(137,141),(138,230),(139,199),(140,168),(142,226),(143,195),(144,164),(146,222),(147,191),(148,160),(150,218),(151,187),(152,156),(154,214),(155,183),(158,210),(159,179),(161,237),(162,206),(163,175),(165,233),(166,202),(167,171),(169,229),(170,198),(173,225),(174,194),(177,221),(178,190),(181,217),(182,186),(185,213),(188,240),(189,209),(192,236),(193,205),(196,232),(197,201),(200,228),(204,224),(208,220),(212,216),(219,239),(223,235),(227,231)]])
63 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 5A | 5B | 6 | 8A | 8B | 8C | 8D | 10A | 10B | 12A | 12B | 12C | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | 20E | 20F | 24A | 24B | 30A | 30B | 30C | 30D | 40A | 40B | 40C | 40D | 60A | 60B | 60C | 60D | 60E | ··· | 60L | 120A | ··· | 120H |
order | 1 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 8 | 8 | 8 | 8 | 10 | 10 | 12 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | 20 | 20 | 20 | 20 | 20 | 24 | 24 | 30 | 30 | 30 | 30 | 40 | 40 | 40 | 40 | 60 | 60 | 60 | 60 | 60 | ··· | 60 | 120 | ··· | 120 |
size | 1 | 1 | 30 | 60 | 60 | 2 | 2 | 4 | 4 | 15 | 15 | 2 | 2 | 2 | 2 | 2 | 30 | 30 | 2 | 2 | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
63 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D4 | D5 | D6 | D6 | D10 | D10 | D15 | C4○D8 | D30 | D30 | S3×D4 | D4×D5 | D24⋊C2 | Q8.D10 | D4×D15 | D120⋊8C2 |
kernel | D120⋊8C2 | C8×D15 | D120 | Q8⋊2D15 | C15×Q16 | Q8⋊3D15 | C5×Q16 | Dic15 | D30 | C3×Q16 | C40 | C5×Q8 | C24 | C3×Q8 | Q16 | C15 | C8 | Q8 | C10 | C6 | C5 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 1 | 2 | 2 | 4 | 4 | 8 |
Matrix representation of D120⋊8C2 ►in GL4(𝔽241) generated by
211 | 63 | 0 | 0 |
178 | 68 | 0 | 0 |
0 | 0 | 8 | 0 |
0 | 0 | 6 | 211 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 138 | 90 |
0 | 0 | 91 | 103 |
178 | 30 | 0 | 0 |
173 | 63 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 13 | 240 |
G:=sub<GL(4,GF(241))| [211,178,0,0,63,68,0,0,0,0,8,6,0,0,0,211],[0,1,0,0,1,0,0,0,0,0,138,91,0,0,90,103],[178,173,0,0,30,63,0,0,0,0,1,13,0,0,0,240] >;
D120⋊8C2 in GAP, Magma, Sage, TeX
D_{120}\rtimes_8C_2
% in TeX
G:=Group("D120:8C2");
// GroupNames label
G:=SmallGroup(480,884);
// by ID
G=gap.SmallGroup(480,884);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,253,120,422,135,100,346,185,80,2693,18822]);
// Polycyclic
G:=Group<a,b,c|a^120=b^2=c^2=1,b*a*b=a^-1,c*a*c=a^89,c*b*c=a^28*b>;
// generators/relations