Extensions 1→N→G→Q→1 with N=C6 and Q=C9○He3

Direct product G=N×Q with N=C6 and Q=C9○He3
dρLabelID
C6×C9○He3162C6xC9oHe3486,253


Non-split extensions G=N.Q with N=C6 and Q=C9○He3
extensionφ:Q→Aut NdρLabelID
C6.1(C9○He3) = C2×C923C3central extension (φ=1)162C6.1(C9oHe3)486,193
C6.2(C9○He3) = C18×He3central extension (φ=1)162C6.2(C9oHe3)486,194
C6.3(C9○He3) = C18×3- 1+2central extension (φ=1)162C6.3(C9oHe3)486,195
C6.4(C9○He3) = C2×C9⋊He3central extension (φ=1)162C6.4(C9oHe3)486,198
C6.5(C9○He3) = C2×C32.23C33central extension (φ=1)162C6.5(C9oHe3)486,199
C6.6(C9○He3) = C2×C9⋊3- 1+2central extension (φ=1)162C6.6(C9oHe3)486,200
C6.7(C9○He3) = C2×C33.31C32central extension (φ=1)162C6.7(C9oHe3)486,201
C6.8(C9○He3) = C2×C927C3central extension (φ=1)162C6.8(C9oHe3)486,202
C6.9(C9○He3) = C2×C924C3central extension (φ=1)162C6.9(C9oHe3)486,203
C6.10(C9○He3) = C2×C925C3central extension (φ=1)162C6.10(C9oHe3)486,204
C6.11(C9○He3) = C2×C928C3central extension (φ=1)162C6.11(C9oHe3)486,205

׿
×
𝔽