Extensions 1→N→G→Q→1 with N=C9xC18 and Q=C3

Direct product G=NxQ with N=C9xC18 and Q=C3
dρLabelID
C3xC9xC18486C3xC9xC18486,190

Semidirect products G=N:Q with N=C9xC18 and Q=C3
extensionφ:Q→Aut NdρLabelID
(C9xC18):1C3 = C2xC92:C3φ: C3/C1C3 ⊆ Aut C9xC18543(C9xC18):1C3486,85
(C9xC18):2C3 = C2xC92:2C3φ: C3/C1C3 ⊆ Aut C9xC18543(C9xC18):2C3486,86
(C9xC18):3C3 = C2xC92:3C3φ: C3/C1C3 ⊆ Aut C9xC18162(C9xC18):3C3486,193
(C9xC18):4C3 = C2xC92:4C3φ: C3/C1C3 ⊆ Aut C9xC18162(C9xC18):4C3486,203
(C9xC18):5C3 = C2xC92:5C3φ: C3/C1C3 ⊆ Aut C9xC18162(C9xC18):5C3486,204
(C9xC18):6C3 = C18x3- 1+2φ: C3/C1C3 ⊆ Aut C9xC18162(C9xC18):6C3486,195
(C9xC18):7C3 = C2xC92:7C3φ: C3/C1C3 ⊆ Aut C9xC18162(C9xC18):7C3486,202
(C9xC18):8C3 = C2xC92:8C3φ: C3/C1C3 ⊆ Aut C9xC18162(C9xC18):8C3486,205
(C9xC18):9C3 = C2xC92:9C3φ: C3/C1C3 ⊆ Aut C9xC18162(C9xC18):9C3486,206

Non-split extensions G=N.Q with N=C9xC18 and Q=C3
extensionφ:Q→Aut NdρLabelID
(C9xC18).1C3 = C2xC27:2C9φ: C3/C1C3 ⊆ Aut C9xC18486(C9xC18).1C3486,71
(C9xC18).2C3 = C2xC92.C3φ: C3/C1C3 ⊆ Aut C9xC18543(C9xC18).2C3486,87
(C9xC18).3C3 = C2xC9:C27φ: C3/C1C3 ⊆ Aut C9xC18486(C9xC18).3C3486,81

׿
x
:
Z
F
o
wr
Q
<