Extensions 1→N→G→Q→1 with N=C3 and Q=C2xC3wrC3

Direct product G=NxQ with N=C3 and Q=C2xC3wrC3
dρLabelID
C6xC3wrC354C6xC3wrC3486,210

Semidirect products G=N:Q with N=C3 and Q=C2xC3wrC3
extensionφ:Q→Aut NdρLabelID
C3:(C2xC3wrC3) = S3xC3wrC3φ: C2xC3wrC3/C3wrC3C2 ⊆ Aut C3186C3:(C2xC3wrC3)486,117

Non-split extensions G=N.Q with N=C3 and Q=C2xC3wrC3
extensionφ:Q→Aut NdρLabelID
C3.1(C2xC3wrC3) = C2xC33:C9central extension (φ=1)54C3.1(C2xC3wrC3)486,73
C3.2(C2xC3wrC3) = C2xHe3:C9central extension (φ=1)162C3.2(C2xC3wrC3)486,77
C3.3(C2xC3wrC3) = C2x3- 1+2:C9central extension (φ=1)162C3.3(C2xC3wrC3)486,78
C3.4(C2xC3wrC3) = C2xC32.24He3central stem extension (φ=1)162C3.4(C2xC3wrC3)486,63
C3.5(C2xC3wrC3) = C2xC33.C32central stem extension (φ=1)162C3.5(C2xC3wrC3)486,64
C3.6(C2xC3wrC3) = C2xC33.3C32central stem extension (φ=1)162C3.6(C2xC3wrC3)486,65
C3.7(C2xC3wrC3) = C2xC32.27He3central stem extension (φ=1)162C3.7(C2xC3wrC3)486,66
C3.8(C2xC3wrC3) = C2xC32.28He3central stem extension (φ=1)162C3.8(C2xC3wrC3)486,67

׿
x
:
Z
F
o
wr
Q
<